Skip to main content

Insight Extractor Package

Project description

TakeBlipInsightExtractor Package

Data & Analytics Research

Overview

Here is presented these content:

  • Intro
  • Run
  • Example of initialization and usage

Intro

The Insight Extractor offers a way to analyze huge volumes of textual data in order to identify, cluster and detail subjects. This project achieves this results by way of applying a proprietary Named Entity Recognition (NER) algorithm followed by a clustering algorithm. The IE Cloud also allows any person to use this tool without having too many computational resources available to themselves.

The package outputs four types of files:

  • Wordcloud: It's an image file containing a wordcloud describing the most frequent subjects on the text. The colours represent the groups of similar subjects.
  • Wordtree: It's an html file which contains the graphic relationship between the subjects and the examples of uses in sentences. It's an interactive graphic where the user can navigate along the tree.
  • Hierarchy: It's a json file which contains the hierarchical relationship between subjects.
  • Table: It's a csv file containing the following columns:
    • Message: Original message;
    • Entities: Entities found in original message;
    • Groups: Entity groups found;
    • Structured Message: Relevant content (structured message).

Parameters

The following parameters need to be set by the user on the command line:

  • embedding_path: path to the embedding model, the file should end with .kv;
  • postagging_model_path: path to the postagging model, the file should end with .pkl;
  • postagging_label_path: path to the postagging label file, the file should end with .pkl;
  • ner_model_path: path to the ner model, the file should end with .pkl;
  • ner_label_path: path to the ner label file, the file should end with .pkl;
  • file: path to the csv file the user wants to analyze;
  • user_email: user's Take Blip email where they want to receive the analysis;
  • bot_name: bot ID.

The following parameters have default settings, but can be customized by the user;

  • node_messages_examples: it is an int representing the number of examples outputed for each subject on the Wordtree file. The default value is 100;
  • similarity_threshold: it is a float representing the similarity threshold between the subject groups. The default value is 0.65, we recommend that this parameter not be modified;
  • percentage_threshold: it is a float representing the frequency percentile of subject from which they are not removed from the analysis. The default value is 0.9;
  • batch_size: it is an int representing the batch size. The default value is 50;
  • chunk_size: it is an int representing chunk file size for upload in storaged. The default value is 1024;
  • separator: it is a str for the csv file delimiter character. The default value is '|'.

Example of initialization e usage:

  1. Import main packages;
  2. Initialize main variables;
  3. Initialize eventhub logger;
  4. Initialize Insight Extractor;
  5. Insight Extractor usage.

An example of the above steps could be found in the python code below:

  • Import main packages
import uuid
from TakeBlipInsightExtractor.insight_extractor import InsightExtractor
from TakeBlipInsightExtractor.outputs.eventhub_log_sender import EventHubLogSender
  • Initialize main variables
embedding_path = '*.kv'
postag_model_path = '*.pkl'
postag_label_path = '*.pkl'
ner_model_path = '*.pkl'
ner_label_path = '*.pkl'

user_email = 'your_email@host.com'
bot_name = 'my_bot_for_insight_extractor'
application_name = 'your application'

eventhub_name = '*'
eventhub_connection_string = '*'

file_name = '*'
input_data = '*.csv'
separator = '|'

similarity_threshold = 0.65
node_messages_examples = 100
batch_size = 1024
percentage_threshold = 0.7
  • Initialize eventhub logger
correlation_id = str(uuid.uuid3(uuid.NAMESPACE_DNS, user_email + bot_name))
logger = EventHubLogSender(application_name=application_name,
                           user_email=user_email,
                           bot_name=bot_name,
                           file_name=file_name,
                           correlation_id=correlation_id,
                           connection_string=eventhub_connection_string,
                           eventhub_name=eventhub_name)
  • Initialize Insight Extractor
insight_extractor = InsightExtractor(input_data,
                                     separator=separator,
                                     similarity_threshold=similarity_threshold,
                                     embedding_path=embedding_path,
                                     postagging_model_path=postag_model_path,
                                     postagging_label_path=postag_label_path,
                                     ner_model_path=ner_model_path,
                                     ner_label_path=ner_label_path,
                                     user_email=user_email,
                                     bot_name=bot_name,
                                     logger=logger)
  • Insight Extractor usage
insight_extractor.predict(percentage_threshold=percentage_threshold,
                          node_messages_examples=node_messages_examples,
                          batch_size=batch_size)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

TakeBlipInsightExtractor-0.0.3.tar.gz (19.5 kB view details)

Uploaded Source

Built Distribution

TakeBlipInsightExtractor-0.0.3-py3-none-any.whl (23.3 kB view details)

Uploaded Python 3

File details

Details for the file TakeBlipInsightExtractor-0.0.3.tar.gz.

File metadata

  • Download URL: TakeBlipInsightExtractor-0.0.3.tar.gz
  • Upload date:
  • Size: 19.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for TakeBlipInsightExtractor-0.0.3.tar.gz
Algorithm Hash digest
SHA256 c9b3774b79ee8a1aa612d979e1adc1c3cf7b2faec70245a3d7b633f6c33b819b
MD5 6c19f4243bd256637392dd0f31402af4
BLAKE2b-256 e8cda96b89a497fffbcc69b4eddadda14a595d064b0f60e3d593cd3e835dead3

See more details on using hashes here.

File details

Details for the file TakeBlipInsightExtractor-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: TakeBlipInsightExtractor-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 23.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for TakeBlipInsightExtractor-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e7ed0dc924c6e7802d964ab629a17e664819e3df739b731cd70fecfc53d9c08e
MD5 2fd61513ea6fc19387df871bfe863fb2
BLAKE2b-256 921c8eb51252c0e63391c8f43bf9bb082dea13a3b27b16b879db6287c7262134

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page