Skip to main content

A wrapper for connecting to RabbitMQ which constrains clients to a single purpose channel (producer or consumer) with healing for intermittent connectivity.

Project description

codecov

talus (noun) - ta·​lus | ˈtā-ləs: a slope formed especially by an accumulation of rock debris; Occasional habitat of the pika.

A wrapper for connecting to RabbitMQ which constrains clients to a single purpose channel (producer or consumer) with healing for intermittent connectivity.

Features

  • Guided separation of connections for producers and consumers

  • Re-establish connections to the server when lost

  • Constrained interface to support simple produce / consume use cases for direct exchanges

Installation

pip install talus

Examples

Creating a consumer which listens on a queue, processes valid messages and publishes as part of processing

Uses default connection parameters and connection retryer expecting a rabbitmq server running in its default configuration.

from talus import DurableConsumer
from talus import DurableProducer
from talus import ConnectionRetryerFactory
from talus import ConsumerConnectionParameterFactory, ProducerConnectionParameterFactory
from talus import MessageProcessorBase
from talus import ConsumeMessageBase, PublishMessageBase, MessageBodyBase
from talus import Queue
from talus import Exchange
from talus import Binding
from typing import Type

##########################
# Consumer Configurations#
##########################
# Configure messages that will be consumed
class ConsumeMessageBody(MessageBodyBase):
    objectName: str
    bucket: str

class ConsumeMessage(ConsumeMessageBase):
    message_body_cls: Type[ConsumeMessageBody] = ConsumeMessageBody

# Configure the queue the messages should be consumed from
inbound_queue = Queue(name="inbound.q")


###########################
# Producer Configurations #
###########################
# Configure messages that will be produced
class ProducerMessageBody(MessageBodyBase):
    key: str
    code: str

class PublishMessage(PublishMessageBase):
    message_body_cls: Type[ProducerMessageBody] = ProducerMessageBody
    default_routing_key: str = "outbound.message.m"

# Configure the queues the message should be routed to
outbound_queue_one = Queue(name="outbound.one.q")
outbound_queue_two = Queue(name="outbound.two.q")


# Configure the exchange and queue bindings for publishing (Publish Message -> Outbound Queues)
publish_exchange = Exchange(name="outbound.exchange") # Direct exchange by default
bindings = [Binding(queue=outbound_queue_one, message=PublishMessage),
            Binding(queue=outbound_queue_two, message=PublishMessage)] # publishing PublishMessage will route to both queues.


############################
# Processor Configurations #
############################

# Configure a message processor to handle the consumed messages
class MessageProcessor(MessageProcessorBase):
    def process_message(self, message: ConsumeMessage):
        print(message)
        outbound_message = PublishMessage(
            body=ProducerMessageBody(
                key=message.body.objectName,
                code="newBucket",
                conversationId=message.body.conversationId,
            )
        )  # crosswalk the values from the consumed message to the produced message
        self.producer.publish(outbound_message)
        print(outbound_message)


# Actually Connect and run the consumer
def main():
    """Starts a listener which will consume messages from the inbound queue and publish messages to the outbound queues."""
    with DurableProducer(
        queue_bindings=bindings,
        publish_exchange=publish_exchange,
        connection_parameters=ProducerConnectionParameterFactory(),
        connection_retryer=ConnectionRetryerFactory(),
    ) as producer:
        with DurableConsumer(
            consume_queue=inbound_queue,
            connection_parameters=ConsumerConnectionParameterFactory(),
            connection_retryer=ConnectionRetryerFactory(),
        ) as consumer:
            message_processor = MessageProcessor(message_cls=ConsumeMessage, producer=producer)
            consumer.listen(message_processor)


if __name__ == "__main__":
    # First message to consume
    class InitialMessage(PublishMessageBase):
        message_body_cls: Type[
            ConsumeMessageBody] = ConsumeMessageBody
        default_routing_key: str = "inbound.message.m"

    initial_message_bindings = [Binding(queue=inbound_queue, message=InitialMessage)]

    with DurableProducer(
            queue_bindings=initial_message_bindings,
            publish_exchange=publish_exchange,
            connection_parameters=ProducerConnectionParameterFactory(),
            connection_retryer=ConnectionRetryerFactory(),
    ) as producer:
        producer.publish(InitialMessage(body={"objectName": "object", "bucket": "bucket"}))
    # Consume the message and process it
    main()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

talus-1.3.2.tar.gz (22.1 kB view details)

Uploaded Source

Built Distribution

talus-1.3.2-py3-none-any.whl (25.5 kB view details)

Uploaded Python 3

File details

Details for the file talus-1.3.2.tar.gz.

File metadata

  • Download URL: talus-1.3.2.tar.gz
  • Upload date:
  • Size: 22.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.12

File hashes

Hashes for talus-1.3.2.tar.gz
Algorithm Hash digest
SHA256 9bb87eaed29231e8a082d630eac0ff4bae95eddb9e10d2b8fc7e97d9a4c64256
MD5 b872adb1b128fa5c4cacea3991b19cd4
BLAKE2b-256 68444433b3b1feed52d871365f6e276b91f76ae44d021fb16f8fb7c9a76f53f6

See more details on using hashes here.

File details

Details for the file talus-1.3.2-py3-none-any.whl.

File metadata

  • Download URL: talus-1.3.2-py3-none-any.whl
  • Upload date:
  • Size: 25.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.12

File hashes

Hashes for talus-1.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d82a5ef53ae9d943422444f1e7446d29475aa8c426ba893b28b47f99c8d5a5da
MD5 3afc9e5ca578f1c95c44993339f3e419
BLAKE2b-256 eefca18fb76157a0ad19c16b16520ddb80e46682cb1f4c7eba019270098bb4a2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page