Skip to main content

No project description provided

Project description

tamp logo

Python compat PyPi GHA Status Coverage Documentation Status

Tamp

Tamp is a low-memory, DEFLATE-inspired lossless compression library.

Features

  • Various implementations available:

    • Pure Python:

      • tamp/compressor.py, tamp/decompressor.py

      • When available, Tamp will use a python-bound C implementation for speed.

    • C library:

      • tamp/_c_src/

  • High compression ratios and low memory use.

  • Compact compression and decompression implementations.

    • Compiled C library is <4KB (compressor + decompressor).

  • Mid-stream flushing.

    • Allows for submission of messages while continuing to compress subsequent data.

  • Customizable dictionary for greater compression of small messages.

  • Convenient CLI interface.

Installation

Tamp contains 3 implementationss:

  1. A desktop Cpython implementation that is optimized for readability

  2. A micropython viper implementation that is optimized for runtime performance.

  3. A C implementation (with python bindings) for accelerated desktop use and to be used in C projects.

Desktop Python

The Tamp library and CLI requires Python >=3.8 and can be installed via:

pip install tamp

MicroPython

For micropython use, there are 3 main files:

  1. tamp/__init__.py - Always required.

  2. tamp/decompressor_viper.py - Required for on-device decompression.

  3. tamp/compressor_viper.py - Required for on-device compression.

For example, if on-device decompression isn’t used, then do not include decompressor_viper.py. If manually installing, just copy these files to your microcontroller’s /lib/tamp folder.

If using mip, tamp can be installed by specifying the appropriate package-*.json file.

mip install github:brianpugh/tamp  # Defaults to package.json: Compressor & Decompressor
mip install github:brianpugh/tamp/package-compressor.json  # Compressor only
mip install github:brianpugh/tamp/package-decompressor.json  # Decompressor only

If using Belay, tamp can be installed by adding the following to pyproject.toml.

[tool.belay.dependencies]
tamp = [
   "https://github.com/BrianPugh/tamp/blob/main/tamp/__init__.py",
   "https://github.com/BrianPugh/tamp/blob/main/tamp/compressor_viper.py",
   "https://github.com/BrianPugh/tamp/blob/main/tamp/decompressor_viper.py",
]

C

Copy the tamp/_c_src/tamp folder into your project. For more information, see the documentation.

Usage

Tamp works on desktop python and micropython. On desktop, Tamp is bundled with the tamp command line tool for compressing and decompressing tamp files.

CLI

Compression

Use tamp compress to compress a file or stream. If no input file is specified, data from stdin will be read. If no output is specified, the compressed output stream will be written to stdout.

$ tamp compress --help

 Usage: tamp compress [OPTIONS] [INPUT_PATH]

 Compress an input file or stream.

╭─ Arguments ────────────────────────────────────────────────────────────────────────╮
   input_path      [INPUT_PATH]  Input file to compress or decompress. Defaults to  
                                 stdin.                                             
╰────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ──────────────────────────────────────────────────────────────────────────╮
 --output   -o      PATH                      Output file. Defaults to stdout.      
 --window   -w      INTEGER RANGE [8<=x<=15]  Number of bits used to represent the  
                                              dictionary window.                    
                                              [default: 10]                         
 --literal  -l      INTEGER RANGE [5<=x<=8]   Number of bits used to represent a    
                                              literal.                              
                                              [default: 8]                          
 --help                                       Show this message and exit.           
╰────────────────────────────────────────────────────────────────────────────────────╯

Example usage:

tamp compress enwik8 -o enwik8.tamp  # Compress a file
echo "hello world" | tamp compress | wc -c  # Compress a stream and print the compressed size.

The following options can impact compression ratios and memory usage:

  • window - 2^window plaintext bytes to look back to try and find a pattern. A larger window size will increase the chance of finding a longer pattern match, but will use more memory, increase compression time, and cause each pattern-token to take up more space. Try smaller window values if compressing highly repetitive data, or short messages.

  • literal - Number of bits used in each plaintext byte. For example, if all input data is 7-bit ASCII, then setting this to 7 will improve literal compression ratios by 11.1%. The default, 8-bits, can encode any binary data.

Decompression

Use tamp decompress to decompress a file or stream. If no input file is specified, data from stdin will be read. If no output is specified, the compressed output stream will be written to stdout.

 $ tamp decompress --help

 Usage: tamp decompress [OPTIONS] [INPUT_PATH]

 Decompress an input file or stream.

╭─ Arguments ────────────────────────────────────────────────────────────────────────╮
   input_path      [INPUT_PATH]  Input file. If not provided, reads from stdin.     
╰────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ──────────────────────────────────────────────────────────────────────────╮
 --output  -o      PATH  Output file. Defaults to stdout.                           
 --help                  Show this message and exit.                                
╰────────────────────────────────────────────────────────────────────────────────────╯

Example usage:

tamp decompress enwik8.tamp -o enwik8
echo "hello world" | tamp compress | tamp decompress

Python

The python library can perform one-shot compression, as well as operate on files/streams.

import tamp

# One-shot compression
string = b"I scream, you scream, we all scream for ice cream."
compressed_data = tamp.compress(string)
reconstructed = tamp.decompress(compressed_data)
assert reconstructed == string

# Streaming compression
with tamp.open("output.tamp", "wb") as f:
    for _ in range(10):
        f.write(string)

# Streaming decompression
with tamp.open("output.tamp", "rb") as f:
    reconstructed = f.read()

Benchmark

In the following section, we compare Tamp against:

  • zlib, a python builtin gzip-compatible DEFLATE compression library.

  • heatshrink, a data compression library for embedded/real-time systems. Heatshrink has similar goals as Tamp.

All of these are LZ-based compression algorithms, and tests were performed using a 1KB (10 bit) window. Since zlib already uses significantly more memory by default, the lowest memory level (memLevel=1) was used in these benchmarks. It should be noted that higher zlib memory levels will having greater compression ratios than Tamp. Currently, there is no micropython-compatible zlib or heatshrink compression implementation, so these numbers are provided simply as a reference.

Compression Ratio

The following table shows compression algorithm performance over a variety of input data sourced from the Silesia Corpus and Enwik8. This should give a general idea of how these algorithms perform over a variety of input data types.

dataset

raw

tamp

zlib

heatshrink

enwik8

100,000,000

51,635,633

56,205,166

56,110,394

build/silesia/dickens

10,192,446

5,546,761

6,049,169

6,155,768

build/silesia/mozilla

51,220,480

25,121,385

25,104,966

25,435,908

build/silesia/mr

9,970,564

5,027,032

4,864,734

5,442,180

build/silesia/nci

33,553,445

8,643,610

5,765,521

8,247,487

build/silesia/ooffice

6,152,192

3,814,938

4,077,277

3,994,589

build/silesia/osdb

10,085,684

8,520,835

8,625,159

8,747,527

build/silesia/reymont

6,627,202

2,847,981

2,897,661

2,910,251

build/silesia/samba

21,606,400

9,102,594

8,862,423

9,223,827

build/silesia/sao

7,251,944

6,137,755

6,506,417

6,400,926

build/silesia/webster

41,458,703

18,694,172

20,212,235

19,942,817

build/silesia/x-ray

8,474,240

7,510,606

7,351,750

8,059,723

build/silesia/xml

5,345,280

1,681,687

1,586,985

1,665,179

Tamp usually out-performs heatshrink, and is generally very competitive with zlib. While trying to be an apples-to-apples comparison, zlib still uses significantly more memory during both compression and decompression (see next section). Tamp accomplishes competitive performance while using around 10x less memory.

Memory Usage

The following table shows approximately how much memory each algorithm uses during compression and decompression.

Action

tamp

zlib

heatshrink

Compression

(1 << windowBits)

(1 << (windowBits+2)) + 7 KB

(1 << windowBits)

Decompression

(1 << windowBits)

(1 << windowBits) + 7 KB

(1 << windowBits)

Both tamp and heatshrink have a few dozen bytes of overhead in addition to the primary window buffer, but are implementation-specific and ignored for clarity here.

Runtime

As a rough benchmark, here is the performance (in seconds) of these different compression algorithms on the 100MB enwik8 dataset. These tests were performed on an M1 Macbook Air.

Action

tamp (Python Reference)

tamp (C)

zlib

heatshrink (with index)

heatshrink (without index)

Compression

109.5

16.45

4.84

6.22

41.729

Decompression

54.0

0.70

0.98

0.82

0.82

Heatshrink v0.4.1 was used in these benchmarks. When heathshrink uses an index, an additional (1 << (windowBits + 1)) bytes of memory are used, tripling the memory requirement. Tamp could use a similar indexing to increase compression speed, but has chosen not to to focus on the primary goal of a low-memory compressor.

Binary Size

To give an idea on the resulting binary sizes, Tamp and other libraries were compiled for the Pi Pico. All libraries were compiled with -O3. Numbers reported in bytes.

Library

Compressor

Decompressor

Compressor + Decompressor

Tamp (micropython)

4779

4717

8262

Tamp (C)

2008

1976

3848

Heatshrink

2956

3876

6832

uzlib

2355

3963

6318

Heatshrink doesn’t include a high level API; in an apples-to-apples comparison the Tamp library would be even smaller.

When to use Tamp

On a Pi Pico (rp2040), the viper implementation of Tamp can compress data at around 4,300 bytes/s when using a 10-bit window. The data can then be decompressed at around 44,100 bytes/s. Tamp is good for compressing data on-device. If purely decompressing data on-device, it will nearly always be better to use the micropython-builtin zlib.decompress, when available.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tamp-1.1.4.tar.gz (34.3 kB view details)

Uploaded Source

Built Distributions

tamp-1.1.4-cp311-cp311-win_amd64.whl (141.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

tamp-1.1.4-cp311-cp311-win32.whl (128.1 kB view details)

Uploaded CPython 3.11 Windows x86

tamp-1.1.4-cp311-cp311-musllinux_1_1_x86_64.whl (731.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

tamp-1.1.4-cp311-cp311-musllinux_1_1_ppc64le.whl (754.6 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

tamp-1.1.4-cp311-cp311-musllinux_1_1_i686.whl (693.9 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

tamp-1.1.4-cp311-cp311-musllinux_1_1_aarch64.whl (724.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

tamp-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (733.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tamp-1.1.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (758.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

tamp-1.1.4-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (701.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (728.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tamp-1.1.4-cp311-cp311-macosx_12_0_x86_64.whl (156.8 kB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

tamp-1.1.4-cp311-cp311-macosx_12_0_arm64.whl (147.5 kB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tamp-1.1.4-cp310-cp310-win_amd64.whl (143.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

tamp-1.1.4-cp310-cp310-win32.whl (129.1 kB view details)

Uploaded CPython 3.10 Windows x86

tamp-1.1.4-cp310-cp310-musllinux_1_1_x86_64.whl (706.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

tamp-1.1.4-cp310-cp310-musllinux_1_1_ppc64le.whl (729.6 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

tamp-1.1.4-cp310-cp310-musllinux_1_1_i686.whl (681.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

tamp-1.1.4-cp310-cp310-musllinux_1_1_aarch64.whl (701.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

tamp-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (697.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tamp-1.1.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (721.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

tamp-1.1.4-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (675.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (692.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tamp-1.1.4-cp310-cp310-macosx_12_0_x86_64.whl (159.4 kB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

tamp-1.1.4-cp310-cp310-macosx_12_0_arm64.whl (150.2 kB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tamp-1.1.4-cp39-cp39-win_amd64.whl (145.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

tamp-1.1.4-cp39-cp39-win32.whl (131.1 kB view details)

Uploaded CPython 3.9 Windows x86

tamp-1.1.4-cp39-cp39-musllinux_1_1_x86_64.whl (723.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

tamp-1.1.4-cp39-cp39-musllinux_1_1_ppc64le.whl (749.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

tamp-1.1.4-cp39-cp39-musllinux_1_1_i686.whl (696.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

tamp-1.1.4-cp39-cp39-musllinux_1_1_aarch64.whl (720.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

tamp-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (714.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tamp-1.1.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (743.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

tamp-1.1.4-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (691.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (712.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tamp-1.1.4-cp39-cp39-macosx_12_0_x86_64.whl (160.8 kB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

tamp-1.1.4-cp39-cp39-macosx_12_0_arm64.whl (150.7 kB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tamp-1.1.4-cp38-cp38-win_amd64.whl (145.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

tamp-1.1.4-cp38-cp38-win32.whl (131.0 kB view details)

Uploaded CPython 3.8 Windows x86

tamp-1.1.4-cp38-cp38-musllinux_1_1_x86_64.whl (754.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

tamp-1.1.4-cp38-cp38-musllinux_1_1_ppc64le.whl (781.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

tamp-1.1.4-cp38-cp38-musllinux_1_1_i686.whl (726.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

tamp-1.1.4-cp38-cp38-musllinux_1_1_aarch64.whl (750.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

tamp-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (724.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tamp-1.1.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (755.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

tamp-1.1.4-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (704.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (722.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tamp-1.1.4-cp38-cp38-macosx_12_0_x86_64.whl (158.1 kB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

tamp-1.1.4-cp38-cp38-macosx_12_0_arm64.whl (148.4 kB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

File details

Details for the file tamp-1.1.4.tar.gz.

File metadata

  • Download URL: tamp-1.1.4.tar.gz
  • Upload date:
  • Size: 34.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.4.tar.gz
Algorithm Hash digest
SHA256 69b2fb54ab1e18943663fd49df2726557ab5dec60c38ff7bed94ee542b2ad479
MD5 2bff3754b57f9a9e47c93229307a364f
BLAKE2b-256 3d9968f298d7e26ba39dda726de7932f4c6d2d1d7168cd3852b4c370aab1884f

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tamp-1.1.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 141.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d010e86204d3c4da9a18f5384d6dd030534a4b6e4adab5683bdda5b77d3c45a9
MD5 03ef03457782e097a105f64d6df48579
BLAKE2b-256 6158123cc3ecb79dd42d2e3cf26bea17a909cba6d608d542a71ddff18e73d738

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: tamp-1.1.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 128.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e215f009709479ab956ec77dfa74451b453dc753a0bbea826871d930d066e9d2
MD5 7361c6b5c6f4dd87bbb1b2feba976f3c
BLAKE2b-256 1248d37c137744fd4cfe08d8a58ff9ba617ba998d0d0d3a736e26334def4876e

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 42366b4c8b274ba8660aa93f8fe52eb0b6521ba6a37cf0f09dac33a50c879662
MD5 3b99a9ea508f01a86c38bd6e474e8333
BLAKE2b-256 53672ca72cf8e03a8ea9842b12876c7a62357cc4cf8faa0b7a488c8e98cdfc7a

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 ceb3b25afe4173f49acde41552a12fdbdbc81bd6b4527c70dbfaf92cb6f5d9ae
MD5 d69ae254a0893c9775649d275e21bf98
BLAKE2b-256 bbf3b2f236e73bd5ef8e4f4523451fa4d178e66e4b12417a221c74785fa47a9b

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8b4c3fa87a6b4c1f69706476f8d1fea75d2aa8eb97963f105fa8e85663a13b12
MD5 f755e6cf46c7eb148f3195b93d1551f1
BLAKE2b-256 8b5ed222bcd07a71a21d13bbcdccbc592f1533a1ac2b7162dbd09062143e9fa3

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c9c74beb690e1393e99d1a237dd1ac6e93d15d83075bad470ce23662e182a07e
MD5 28457f3e68cd31f26d9d47c6a300df6d
BLAKE2b-256 932124a786a513884d440853ff2747577760bb9ecee94e1b114c7c6a304c9453

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10571f700df86ac72762fa31eabb847b3792e824df1b7a46e26cd4fa1c131b0f
MD5 90e2ebbcd794c7d9b0be75a863e11016
BLAKE2b-256 3d4febac79d42511420650a6ee136d31a53a1d6357e9e1e61e097bec1ad5add4

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4952dca69932e06dcb5173c3424f27e734d8d086f4a7f2c8e97428d3306a8c97
MD5 ad0959b6798a3cc7ade968101826b79f
BLAKE2b-256 1a648f70b526264df8367557b6657c611d93b5e139e2dacb6d90a1bfc1442301

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 163ff478982c456d86adf72567157fa04ac4a1ffcaba135eb1eb3c1cd47f7078
MD5 5f967c3115ae7b27011e5d359aefc12c
BLAKE2b-256 116c5356b6a6afbf2eb4d6cac6f41d971b27e70420a5df110b50d83b539e4765

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 59a5f95d2f039b5c52931a11efd15f9e08a86282a4c036bd93ca0a43ce3aff8a
MD5 8e56d4c4732c70e8cb90fb06e76b21b7
BLAKE2b-256 189a75ce252b7bf2e175590c3c8185211e02f78a5e8c4ab5db521717c33ab9e6

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 7561e88350bfc75129131fcfa672acab41ea5f3b0519626acdbde666f75abda3
MD5 051b5151a4413a6797c1dd08fc2b17d4
BLAKE2b-256 d367097595a1d6b7c3537d74958d6d61c6b03bde186f6e2f0d4f91887999354b

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a1f7a5e32de4be932b211369e3bfbf339da63853d55c29bb4d017eb239f6fcd6
MD5 2f2260caebfe0044bfd8039ff24e06c5
BLAKE2b-256 bd45ada26f3f643ef878e417637b93b1fa28c8f84ee2b5775cd03820b490b11a

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tamp-1.1.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 143.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 227e139565f5c496414903173aeddcba628960e473537a5ff0e66b3ddc596409
MD5 437072cee09f85722e9a9fd4d07221d7
BLAKE2b-256 b55bc3d6cf8b8bb41781ffe01c4d3956955472796ca5a6d0b449e32a09601739

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: tamp-1.1.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 129.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f9b51013be0792cb37a47d46fccb4b35e1fcd3f1ee0589fdeb26302cdb0214e4
MD5 b0e85bb898b08fbe514dd0fae203d097
BLAKE2b-256 919bfca3ec7e277edd206df64e6a89beb7f1d6149184f7449ec59e5298781e6b

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9db533f79dfc194a14b963ae0e139c86ae67f5d73e221742c13376dcbc9f81fd
MD5 45924a87aac9d40486676a3f1230005d
BLAKE2b-256 984e27588edb4bc4a267f408dfd5ec41538b3c6ef39ea93999e8bbec68df2a99

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 5c50550e10545e2cd8740444a8b30cdc562d5b5c2db831cb4c148a7546591ad1
MD5 fcc012f7f450d83a2c190ee164aac689
BLAKE2b-256 4199f345172e521f3be332bdf75ae1b3030adc7f3ee27b6cdb7faa70abdc133c

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 609475138ff156591712cbc50fe701830e3a91892bb58178f76cbc97d5ad1517
MD5 0365c25d6020216f2872ee3fc8114727
BLAKE2b-256 dd9fd604d7b6c7a8061cf6987f8fa47af04dd8e954619c803f51deaec76cea8e

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 54c0129f41b8d356a505787adb0037f471c043637a2992821ecc35293c95f608
MD5 6fb702983304f02d1d4ff1d9eca58ac9
BLAKE2b-256 0d50e6b830caa246be1f5e678706cd800e3d0235bbbdc6a18cd0ad3918dc1469

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dcf2294293d5346bb08e3589c0b7758445112e1b8cb9e7b78ee52af4b2fc2ef1
MD5 35e8242fff7b040e31ec87fdfb5fe327
BLAKE2b-256 ab0beaef9cf5b3407a6238a33978aa881e2d5567d869e5d061ce5415eccc6050

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4e4aa70199cfa5dfaf7a68b5efe8ed0a63d69f0121a3acdcd10fa4ce2ed64adf
MD5 e51ccb47aaf213b6e7456675a111224c
BLAKE2b-256 5bdba1a330245104e25c07caa1d0308edae9f0681fe68ebd4702da8397f13935

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b3edd58caa33f876eb153f8f4d0e4e2f9d85e0fbd7a2a77e1b1aeea7b2a8f178
MD5 8b6ab787139b96bf93def5623585730c
BLAKE2b-256 0356e9e9830fa161c621d05f197d58dc3e7c598e40e20efb9bc967872df392f3

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6f4bf192d9469e6a8e0c6ea0806312edbb8db90dda43e45598e52155dbc9c6f5
MD5 1622d49fafe6c7125f3e8b48168a5569
BLAKE2b-256 1e40b82036547ad8e12d8d7b44a321721a45478020b8d18a00014bb5e101feb3

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 9d5e396926d047e48f28ce959921ae1ddf228c8b6eefaabfa68a65557858ac04
MD5 a806a001dccc2395c4896579931797f5
BLAKE2b-256 92644114e0019e349493095abcb043699315760b11b78a0e5eed0752d9e34f10

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 447bb833fcf5a2410c0bdf646f5d857b0914fe70dbf3584095da32279e2811fa
MD5 f4a2f22aa5c170c0613b58689d6372a0
BLAKE2b-256 620f9381db33cb83e73d2ecba63aa35739d66ea2e22bd878dfdc6e1d7e6fde25

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tamp-1.1.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 145.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 39bec35fdf160f0e3bc9b6adca26fdb583c559ae689c3e5767d030deaa13a76d
MD5 e3b9a84a7702faa5f4448d176b7db8a7
BLAKE2b-256 a4ba2ab8ed11f8b2ece8d381853d0bd0acb8ea34f1160fd6bfed5b50a4a00b53

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: tamp-1.1.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 131.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c43b01b5004cc3ea51c8094330dc3cc8cc6e3e43fb7f3b0bbaf594efe6db9503
MD5 c6e9dc927bd0c8041b6f8827fb654e51
BLAKE2b-256 7c76677499d45c2a7a99785d8a39f81219ccf4a1bc47538a84be0bda60a990dd

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e73adacdf27bc400346bf1781e8b3a57f06c1841b010e33a24a1f8fa1583d15e
MD5 7803a953a770397c20cee1b98d866e6d
BLAKE2b-256 bfbde01d0ca30324820153d40418ed5c7b374bc647be942013ccb4884ae4fe85

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 7d83d714255eaba76e13167c81a2686d57654bb5de262cd60ff165916a900d18
MD5 89756e3bbc6a2a1efbe9f0430661d6c9
BLAKE2b-256 5a538907565e670ee079ec9dbdf0d369cf1c7f6136b0dd40dc312a40678ed22b

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3c407a0084091a3d70ade3eecf90a86e58035f9cc6a2d7fd9d5671880b2a6a68
MD5 6134618ce8ff0fd97e25085f0a0ef9c5
BLAKE2b-256 b630e66575ee81e81dbff76aff70fff24710efb64de714b3c23b1b79d2e3d3fc

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 884e17c84a7185207a411faa9fcf19ef4a960fbf1ef71e702fc39bcf26d4e59b
MD5 8d10f8a1042a9e2cb963e362295f23bb
BLAKE2b-256 de52985fa2d05e71440685ccc6e6e200ab44994fee1cb171c5957b56ce74677c

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a0914f9c06f9ab9e86db60ed7dd2bf44ca076549346fad90a5994a2cf2907a24
MD5 f0870519f9040d26a34dd620723a8f9e
BLAKE2b-256 9a297633463e3ba420c3366aa45ad0b80be6820fc07e306e0800ee7da19341ba

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 233ae9a8d5a8148c33bc7e955e21b6e7ecd4d8f2590048e04abe45e2f95fe152
MD5 c08dfa90a3fb9ce630f5fee17944656b
BLAKE2b-256 8a5188eacabe62f953ec5b5e7f6d5cf56a5764932ee693f778db960a59ebc224

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e30f02a64e012adcaa299fef26dd65b65bca153f589e85605d0457e0d61ba46a
MD5 c8e0551a96506ad032c8e34a545f6436
BLAKE2b-256 4b19ffa7108d8015184e3c127c57ce367c7549c4ea269b0b5913fa1d30ad4925

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ceea2264928c50f184786bce6f42711b931e44f76462cf87ab36f3375d0cc778
MD5 1cb30ba3078755f983a957777dd8a308
BLAKE2b-256 d30b8dabb6c3e23a0b4b70585934cfa258f231389cc82ff32add90f712dc90e3

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 b195c0405b47f7518f7f4f9e0daaa2acf1e999072a9909eb18133b813c1269c6
MD5 e72d74ff95025df0d41ab5ad40f6273c
BLAKE2b-256 eb9b2977ba50f6f61d8cf6eb66d33e5d3faa364e298684a06cc2225823f1c4c6

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 cd91b5e44127e6560d346cc7bc36b419e653e82a7cadd0e880757da84d326da0
MD5 f3b860c8a231cc0e9372ba775474a34a
BLAKE2b-256 d8694d61849081aac93e6f506ef90a9973372098b2f6acf90e22cf08e659adfc

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tamp-1.1.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 145.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6cb23ea2dc006ab015ecb34694077c945d510c72893250b85485bfbeab94b286
MD5 2b9a27519ca6f80beea5b6d2bd3c7f22
BLAKE2b-256 5564692c1e729773ef611b6b7381493ea8be1882b299a0d755203860df9ae61f

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: tamp-1.1.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 131.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6990060e58eb3f44fe07b0c55d57da4d35ba702c6b70288476d176365c5da838
MD5 6ddcec7f264722edb7d9b3507bcf59ff
BLAKE2b-256 d670db441903ed4e766aaca75069a423ac102342815571b73ae42a44033c28fd

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 512bfb1dc24bed9e835e162f31ff5d524ed3a4c0881f2f37121477a49cc24a48
MD5 f7b4d11e00928ec39433cf6054f53585
BLAKE2b-256 814c206e26b35146fbed5842cd321d5d3f7e7247e439f4664a78c6910152fbbe

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 d6e2c764d665be408fe754fb5f981b5b2b7e20b0d74320530296fa83187e740a
MD5 fb406b10acc6a135413e2ae4b9c9d456
BLAKE2b-256 89f016a88f5e080d5662f7f5ac416d9479e3a476fdbcc7710fbc2624356b321c

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 232614a04cb686bce4f3f79b57404e9780aa68391d8cf87586e6e8a97049a15e
MD5 18271e30e5b3aafb29b8c798cfa84e37
BLAKE2b-256 ade22628539efbc2382c6d86e7a497a333df6bd1887ebb8d5abf4d48db3944c8

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 dd15dae40d182497a0eed5a5c0571009eb7a2b91d2d6e3b4f73d58f4321c5bf9
MD5 64134b4285abd63869038475d4b9aa33
BLAKE2b-256 dc7b013b11c712588170fc980d14b23d4d62c51e82e6d566bc6dc1a31bbc0a08

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed0c4776bbf0418e201eabf180dcabffbd04985278c124cf0ae5db8461025480
MD5 cd71d700eb1010be32d5ad9241c53f14
BLAKE2b-256 00579c4922215c6baebb1d7e431008ae6a00f316109e95c235ef0aa831a89962

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 17ec8259a9fb167f8be47036ebfcd68513f9fc8c3bdc6d72898faf4aab2899b6
MD5 526f19b89565b2e051ca263ddae36111
BLAKE2b-256 daced3431226e87ca3e0599897fa370b8d39ebc95b257756fb15a5c74e74a2af

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 054cbe4301aa95441cd5b246355aba691b8749968997bcb51819ee9fd5485b68
MD5 56cfc1a86cf910fa3e3e41efe7785708
BLAKE2b-256 98cd7c5e6c9d966e781a31d909db71e9104e6d55524639c8d199ca2bf3a52b04

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6a2e394269d55169dbbbf540382adb8b87991bd1cd18c83a388cf8842331440d
MD5 36abf8ae193da8f7107b530b6c09ba3d
BLAKE2b-256 8fb86bad79a62711123eac461fe40e1163b8aa68577a3b31a1a0733bb97de101

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 97baeee3c02a73c20bbe946991b11a954572b0a752ba6dc066441f09a04bc2da
MD5 a5aa79292b43d18b9e9db8163a45f1a7
BLAKE2b-256 4fd631a64b09d1cd4a85db184a44e4e17f87e54657b30722a7cbb7f21ac67027

See more details on using hashes here.

File details

Details for the file tamp-1.1.4-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.1.4-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e10ff7d2080a585d3996eb6179da4750ca754f06560fc613cf8048734f1602b9
MD5 a8a2567bafc51951952924e47bc3b393
BLAKE2b-256 5a1d1d9a81329325a071edd50533d811ea2cd24aa929c1b5613f9c4e6c59ad9c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page