Skip to main content

No project description provided

Project description

tamp logo

Python compat PyPi GHA Status Coverage Documentation Status

Tamp

Tamp is a low-memory, DEFLATE-inspired lossless compression library.

Features

  • Various implementations available:

    • Pure Python:

      • tamp/compressor.py, tamp/decompressor.py

      • When available, Tamp will use a python-bound C implementation for speed.

    • C library:

      • tamp/_c_src/

  • High compression ratios and low memory use.

  • Compact compression and decompression implementations.

    • Compiled C library is <4KB (compressor + decompressor).

  • Mid-stream flushing.

    • Allows for submission of messages while continuing to compress subsequent data.

  • Customizable dictionary for greater compression of small messages.

  • Convenient CLI interface.

Installation

Tamp contains 3 implementations:

  1. A desktop Cpython implementation that is optimized for readability

  2. A micropython viper implementation that is optimized for runtime performance.

  3. A C implementation (with python bindings) for accelerated desktop use and to be used in C projects.

Desktop Python

The Tamp library and CLI requires Python >=3.8 and can be installed via:

pip install tamp

MicroPython

For micropython use, there are 3 main files:

  1. tamp/__init__.py - Always required.

  2. tamp/decompressor_viper.py - Required for on-device decompression.

  3. tamp/compressor_viper.py - Required for on-device compression.

For example, if on-device decompression isn’t used, then do not include decompressor_viper.py. If manually installing, just copy these files to your microcontroller’s /lib/tamp folder.

If using mip, tamp can be installed by specifying the appropriate package-*.json file.

mip install github:brianpugh/tamp  # Defaults to package.json: Compressor & Decompressor
mip install github:brianpugh/tamp/package-compressor.json  # Compressor only
mip install github:brianpugh/tamp/package-decompressor.json  # Decompressor only

If using Belay, tamp can be installed by adding the following to pyproject.toml.

[tool.belay.dependencies]
tamp = [
   "https://github.com/BrianPugh/tamp/blob/main/tamp/__init__.py",
   "https://github.com/BrianPugh/tamp/blob/main/tamp/compressor_viper.py",
   "https://github.com/BrianPugh/tamp/blob/main/tamp/decompressor_viper.py",
]

C

Copy the tamp/_c_src/tamp folder into your project. For more information, see the documentation.

Usage

Tamp works on desktop python and micropython. On desktop, Tamp is bundled with the tamp command line tool for compressing and decompressing tamp files.

CLI

Compression

Use tamp compress to compress a file or stream. If no input file is specified, data from stdin will be read. If no output is specified, the compressed output stream will be written to stdout.

$ tamp compress --help

 Usage: tamp compress [OPTIONS] [INPUT_PATH]

 Compress an input file or stream.

╭─ Arguments ────────────────────────────────────────────────────────────────────────╮
   input_path      [INPUT_PATH]  Input file to compress or decompress. Defaults to  
                                 stdin.                                             
╰────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ──────────────────────────────────────────────────────────────────────────╮
 --output   -o      PATH                      Output file. Defaults to stdout.      
 --window   -w      INTEGER RANGE [8<=x<=15]  Number of bits used to represent the  
                                              dictionary window.                    
                                              [default: 10]                         
 --literal  -l      INTEGER RANGE [5<=x<=8]   Number of bits used to represent a    
                                              literal.                              
                                              [default: 8]                          
 --help                                       Show this message and exit.           
╰────────────────────────────────────────────────────────────────────────────────────╯

Example usage:

tamp compress enwik8 -o enwik8.tamp  # Compress a file
echo "hello world" | tamp compress | wc -c  # Compress a stream and print the compressed size.

The following options can impact compression ratios and memory usage:

  • window - 2^window plaintext bytes to look back to try and find a pattern. A larger window size will increase the chance of finding a longer pattern match, but will use more memory, increase compression time, and cause each pattern-token to take up more space. Try smaller window values if compressing highly repetitive data, or short messages.

  • literal - Number of bits used in each plaintext byte. For example, if all input data is 7-bit ASCII, then setting this to 7 will improve literal compression ratios by 11.1%. The default, 8-bits, can encode any binary data.

Decompression

Use tamp decompress to decompress a file or stream. If no input file is specified, data from stdin will be read. If no output is specified, the compressed output stream will be written to stdout.

 $ tamp decompress --help

 Usage: tamp decompress [OPTIONS] [INPUT_PATH]

 Decompress an input file or stream.

╭─ Arguments ────────────────────────────────────────────────────────────────────────╮
   input_path      [INPUT_PATH]  Input file. If not provided, reads from stdin.     
╰────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ──────────────────────────────────────────────────────────────────────────╮
 --output  -o      PATH  Output file. Defaults to stdout.                           
 --help                  Show this message and exit.                                
╰────────────────────────────────────────────────────────────────────────────────────╯

Example usage:

tamp decompress enwik8.tamp -o enwik8
echo "hello world" | tamp compress | tamp decompress

Python

The python library can perform one-shot compression, as well as operate on files/streams.

import tamp

# One-shot compression
string = b"I scream, you scream, we all scream for ice cream."
compressed_data = tamp.compress(string)
reconstructed = tamp.decompress(compressed_data)
assert reconstructed == string

# Streaming compression
with tamp.open("output.tamp", "wb") as f:
    for _ in range(10):
        f.write(string)

# Streaming decompression
with tamp.open("output.tamp", "rb") as f:
    reconstructed = f.read()

Benchmark

In the following section, we compare Tamp against:

  • zlib, a python builtin gzip-compatible DEFLATE compression library.

  • heatshrink, a data compression library for embedded/real-time systems. Heatshrink has similar goals as Tamp.

All of these are LZ-based compression algorithms, and tests were performed using a 1KB (10 bit) window. Since zlib already uses significantly more memory by default, the lowest memory level (memLevel=1) was used in these benchmarks. It should be noted that higher zlib memory levels will having greater compression ratios than Tamp. Currently, there is no micropython-compatible zlib or heatshrink compression implementation, so these numbers are provided simply as a reference.

Compression Ratio

The following table shows compression algorithm performance over a variety of input data sourced from the Silesia Corpus and Enwik8. This should give a general idea of how these algorithms perform over a variety of input data types.

dataset

raw

tamp

zlib

heatshrink

enwik8

100,000,000

51,635,633

56,205,166

56,110,394

build/silesia/dickens

10,192,446

5,546,761

6,049,169

6,155,768

build/silesia/mozilla

51,220,480

25,121,385

25,104,966

25,435,908

build/silesia/mr

9,970,564

5,027,032

4,864,734

5,442,180

build/silesia/nci

33,553,445

8,643,610

5,765,521

8,247,487

build/silesia/ooffice

6,152,192

3,814,938

4,077,277

3,994,589

build/silesia/osdb

10,085,684

8,520,835

8,625,159

8,747,527

build/silesia/reymont

6,627,202

2,847,981

2,897,661

2,910,251

build/silesia/samba

21,606,400

9,102,594

8,862,423

9,223,827

build/silesia/sao

7,251,944

6,137,755

6,506,417

6,400,926

build/silesia/webster

41,458,703

18,694,172

20,212,235

19,942,817

build/silesia/x-ray

8,474,240

7,510,606

7,351,750

8,059,723

build/silesia/xml

5,345,280

1,681,687

1,586,985

1,665,179

Tamp usually out-performs heatshrink, and is generally very competitive with zlib. While trying to be an apples-to-apples comparison, zlib still uses significantly more memory during both compression and decompression (see next section). Tamp accomplishes competitive performance while using around 10x less memory.

Memory Usage

The following table shows approximately how much memory each algorithm uses during compression and decompression.

Action

tamp

zlib

heatshrink

Compression

(1 << windowBits)

(1 << (windowBits+2)) + 7 KB

(1 << windowBits)

Decompression

(1 << windowBits)

(1 << windowBits) + 7 KB

(1 << windowBits)

Both tamp and heatshrink have a few dozen bytes of overhead in addition to the primary window buffer, but are implementation-specific and ignored for clarity here.

Runtime

As a rough benchmark, here is the performance (in seconds) of these different compression algorithms on the 100MB enwik8 dataset. These tests were performed on an M1 Macbook Air.

Action

tamp (Python Reference)

tamp (C)

zlib

heatshrink (with index)

heatshrink (without index)

Compression

109.5

16.45

4.84

6.22

41.729

Decompression

54.0

0.70

0.98

0.82

0.82

Heatshrink v0.4.1 was used in these benchmarks. When heathshrink uses an index, an additional (1 << (windowBits + 1)) bytes of memory are used, tripling the memory requirement. Tamp could use a similar indexing to increase compression speed, but has chosen not to to focus on the primary goal of a low-memory compressor.

To give an idea of Tamp’s speed on an embedded device, the following table shows compression/decompression in bytes/second of the first 100KB of enwik8 on a pi pico (rp2040) at the default 125MHz clock rate. This isn’t exactly an apples-to-apples comparison because the C benchmark does not use a filesystem (and thusly, reduced overhead) nor dynamic memory allocation, but is good enough to get the idea across.

Action

tamp (Micropython Viper)

tamp (C)

Compression

~4,300

~28,500

Decompression

~42,000

~1,042,524

Binary Size

To give an idea on the resulting binary sizes, Tamp and other libraries were compiled for the Pi Pico (armv6m). All libraries were compiled with -O3. Numbers reported in bytes.

Library

Compressor

Decompressor

Compressor + Decompressor

Tamp (micropython)

4429

4205

7554

Tamp (C)

2008

1972

3864

Heatshrink

2956

3876

6832

uzlib

2355

3963

6318

Heatshrink doesn’t include a high level API; in an apples-to-apples comparison the Tamp library would be even smaller.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tamp-1.1.6.tar.gz (35.1 kB view details)

Uploaded Source

Built Distributions

tamp-1.1.6-cp311-cp311-win_amd64.whl (165.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

tamp-1.1.6-cp311-cp311-win32.whl (147.2 kB view details)

Uploaded CPython 3.11 Windows x86

tamp-1.1.6-cp311-cp311-musllinux_1_1_x86_64.whl (843.9 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

tamp-1.1.6-cp311-cp311-musllinux_1_1_ppc64le.whl (867.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

tamp-1.1.6-cp311-cp311-musllinux_1_1_i686.whl (801.6 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

tamp-1.1.6-cp311-cp311-musllinux_1_1_aarch64.whl (837.6 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

tamp-1.1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (862.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tamp-1.1.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (893.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

tamp-1.1.6-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (825.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.1.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (860.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tamp-1.1.6-cp311-cp311-macosx_12_0_x86_64.whl (177.2 kB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

tamp-1.1.6-cp311-cp311-macosx_12_0_arm64.whl (170.5 kB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tamp-1.1.6-cp310-cp310-win_amd64.whl (164.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

tamp-1.1.6-cp310-cp310-win32.whl (146.7 kB view details)

Uploaded CPython 3.10 Windows x86

tamp-1.1.6-cp310-cp310-musllinux_1_1_x86_64.whl (782.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

tamp-1.1.6-cp310-cp310-musllinux_1_1_ppc64le.whl (809.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

tamp-1.1.6-cp310-cp310-musllinux_1_1_i686.whl (749.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

tamp-1.1.6-cp310-cp310-musllinux_1_1_aarch64.whl (777.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

tamp-1.1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (792.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tamp-1.1.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (825.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

tamp-1.1.6-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (761.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.1.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (789.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tamp-1.1.6-cp310-cp310-macosx_12_0_x86_64.whl (175.8 kB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

tamp-1.1.6-cp310-cp310-macosx_12_0_arm64.whl (169.6 kB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tamp-1.1.6-cp39-cp39-win_amd64.whl (165.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

tamp-1.1.6-cp39-cp39-win32.whl (147.7 kB view details)

Uploaded CPython 3.9 Windows x86

tamp-1.1.6-cp39-cp39-musllinux_1_1_x86_64.whl (792.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

tamp-1.1.6-cp39-cp39-musllinux_1_1_ppc64le.whl (815.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

tamp-1.1.6-cp39-cp39-musllinux_1_1_i686.whl (756.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

tamp-1.1.6-cp39-cp39-musllinux_1_1_aarch64.whl (787.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

tamp-1.1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (800.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tamp-1.1.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (832.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

tamp-1.1.6-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (768.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.1.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (796.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tamp-1.1.6-cp39-cp39-macosx_12_0_x86_64.whl (177.1 kB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

tamp-1.1.6-cp39-cp39-macosx_12_0_arm64.whl (170.8 kB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tamp-1.1.6-cp38-cp38-win_amd64.whl (165.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

tamp-1.1.6-cp38-cp38-win32.whl (147.8 kB view details)

Uploaded CPython 3.8 Windows x86

tamp-1.1.6-cp38-cp38-musllinux_1_1_x86_64.whl (821.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

tamp-1.1.6-cp38-cp38-musllinux_1_1_ppc64le.whl (843.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

tamp-1.1.6-cp38-cp38-musllinux_1_1_i686.whl (786.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

tamp-1.1.6-cp38-cp38-musllinux_1_1_aarch64.whl (814.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

tamp-1.1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (796.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tamp-1.1.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (832.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

tamp-1.1.6-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (765.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.1.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (791.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tamp-1.1.6-cp38-cp38-macosx_12_0_x86_64.whl (177.4 kB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

tamp-1.1.6-cp38-cp38-macosx_12_0_arm64.whl (171.3 kB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

File details

Details for the file tamp-1.1.6.tar.gz.

File metadata

  • Download URL: tamp-1.1.6.tar.gz
  • Upload date:
  • Size: 35.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tamp-1.1.6.tar.gz
Algorithm Hash digest
SHA256 dcd061d74429c6d55e46779209629fc3b1221fbab647f756011c02078e68dc19
MD5 a65b8ab9f7aa1042d40c2d5ea5b3eb4e
BLAKE2b-256 4eccf0a2287787f10be6a6618241185249c6a8bb0b90393c2d7584ac6a13eb6e

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tamp-1.1.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 165.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tamp-1.1.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e73ab30fe681e22440c84d18b0e5ac4ecd6efe6926250f80d4ec43b7c86a292c
MD5 d2cff3e582ecec06e80acd1e87626408
BLAKE2b-256 9dccfdf093cbcc5bf006512bba93faf0d7a89e4840eb1a562471d4ed59976ea3

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp311-cp311-win32.whl.

File metadata

  • Download URL: tamp-1.1.6-cp311-cp311-win32.whl
  • Upload date:
  • Size: 147.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tamp-1.1.6-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 ec50b02f6deef41fb39ff122bcb3fd4a6f26048b4c091f016e87c2fea53b399f
MD5 2a438a17df4ab21f508d665d959e77f2
BLAKE2b-256 b6b4f6aa6c0502984ba36d1d9febbff4587d17d0e170d735aafc06b2f1cd8ecf

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 92745b7971800f413de789a8471a6a875e27a8c2417662b7763b50c99326e9a2
MD5 4af2123c48e6729f2d1a40ef84ba5b48
BLAKE2b-256 c5988e27e28f4836c440b67f78b074d6b0f4f1b9a95af096a71d09cb51590b27

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 0c8035ca217aad9eaf65e0c779fb43fbd176bc2cf51c118bd0cfe5f56917ae84
MD5 67ecf77e81208af53d94a22b862351bd
BLAKE2b-256 a7b9848106db60ec1ec2fb354bed139de75d2a3008238923d4f7adf65bc3efd6

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 03fb7b98ed340bb1fda7ecea56a611087102259aa3e20095907bb5f345d28e52
MD5 24100b31edcf815be28dda240682e549
BLAKE2b-256 892127a8fd133bec34b1a32718ccc78db6a640a0d25a2e78d2cc0d8eed4c9972

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f2cec0810dc06a360ac91a0b972da8c50e2d38563758d3b9edf5ed77ba22bead
MD5 78204061040af4bb39c148e3cce748c1
BLAKE2b-256 2790e345ee50a0cb714d62ef0000172c0ee841e01636f32372c5e3f1f03a2637

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 af7f2207678e3b3b0947a2d1582fca99da8af6daeed8a35aa4235865ff56b6fb
MD5 4b19933e9cd2792b047f12cb7eb6cc3e
BLAKE2b-256 3f0fcc311611115e5a3fd9a20e46ff2f94cc30b7c69328f00f2bb08254c48e0d

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1c0b216bf6321456409dbccc24c33789bc95f1e4aa14d413a5d60f0c240fb0d4
MD5 cc8166e7adb237c06540e11cc0830034
BLAKE2b-256 064065a058b6cd985a74fa262361f6e07d09752643baeb3dc86045ec4ed47e02

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9b9ab9899fc79a807cd20dc387202d575334c15e5950bfcfa52d5e1a7f7cb967
MD5 f4a01d4953da5b3933a8d11e9155cde4
BLAKE2b-256 157d3825973870e2b038eb91b9ec1d7389c225da8352379457260c2c182ae43e

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ba96347773ed44be9a92eb06a0ec9bd494c98d0464a7cc0d16c6611b7516ba36
MD5 c981e97fbd2588ec08e44d7e74f02a5e
BLAKE2b-256 43d90b0305760432a0c0be3f574d026ed02c7569f9f441f3d7c5cd259efe64b4

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 57ccd8b0399b5791cfc205502c545bbe3db7b8ecc6506403e67ebcecec9fb7ce
MD5 66a41ecb0cf6f81a38fda4c852b9786e
BLAKE2b-256 e2e3499c1319a11b31b89093eb3bba34d2ea3e84df0ab8d6dc82fdff3dd61112

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 6b7a6bae3267a1c850b5ed8062f3abe36846048ab5cbecb2c7b1fb89f0d43bda
MD5 06795c300aa39196e67801adaddc57a9
BLAKE2b-256 78b9da284eb6465d23eb99f43c8cb7998cffd470459ecf801dc18336a0550ba5

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tamp-1.1.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 164.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tamp-1.1.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 afe1ca4fddbe1dc9325477d1a100a946fd8cd61ebcc6717efc8250a78065f075
MD5 5180514f9686d61236e71bf1efb8d5c8
BLAKE2b-256 747c688c7a6cece226f338f1ea27c1eafbd5814c5dbb42bc102e9d58723f46f3

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp310-cp310-win32.whl.

File metadata

  • Download URL: tamp-1.1.6-cp310-cp310-win32.whl
  • Upload date:
  • Size: 146.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tamp-1.1.6-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ab7e7b282d027764b7827dde6cb9a92fa1f9d98c22a3fdb0d88225d69421003f
MD5 d0384963ac38fc7128963959b3b7caa8
BLAKE2b-256 46428d03249431e676b208990096bead83acf4faf742019f7a7f47f41e02a82a

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e386ae52fe18ed36b0db90bd0fad24a2fcd0e93af5a20ccd867c2295029f591f
MD5 e65fbe7ae5dab802836586c93119e6dd
BLAKE2b-256 c74735d6e30c848a6d3d2e962811e3f207741aa6ed008fdd8141c43b2ee42482

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 13eaf8be8becd5c827301dbc0dee7703662d402ef9fcfc8fd07d95a87d9675b5
MD5 271c91f3b0c13737f98f98c2f34860e4
BLAKE2b-256 07bda70b27d13330bdef2345bb71aa3a6cb5be121991a1c143147871a290cf68

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 935a601ea62df154c618d19211b3b30e17637bc2e90140de0b5bf02e354b4495
MD5 8406ae2b6b9fbb7ebd3f086ddb75237e
BLAKE2b-256 9dff2bc53c1752a2e4809cbba0066a660390600c95b345313b2e841903468107

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e775298e89d67b6220027342fceda122d0fef16e386a5afc237aeb912350bdaf
MD5 221da1b3aee58dfd7d38f41afad62e1e
BLAKE2b-256 c731e99fb9fead1c7483af6c273d36085bfeff1e3984cb7366fbf42ddd8f877e

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 799a5a398b87de4c5291253cf5bd593f528f3151bb19b8eb52e19e91ec8dbcc7
MD5 fa970a9674f431649c215f341fe9270e
BLAKE2b-256 eb6a75e1fd1337236cb0a2ce7fcf43ac96f068627163b886d2716daaff32a30a

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 db868d95784a57264145305cc0a14f262d37e00c2d82d7dce8b3c9729401faea
MD5 6e802f08029f0532afcf8139774d5615
BLAKE2b-256 3f8569ab52286c9c911519468eaec38f54e95a6e857a0222ae60ccad07b45c36

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c68c86f474a848b2525e08e730d233e764c3cd714ccc945cd4deccd0ab799e71
MD5 23a1ad7015cad88419992b53fdda8d8e
BLAKE2b-256 561c64ef626c218aceb38001d9f539dc1d70140ac52aaf1249f3cb33dbec1c2a

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7b5adcd3fb016bd6938d995ccd4895c8c00c9291fdd53fd14690cd30c3c2a8c3
MD5 bc408b4370f0bf049d14adbd649be63f
BLAKE2b-256 03a515620a42d867a51016259bafdac79800189bbe54fc8e331541f4379bf671

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 63f24862c7658895cea24aa80b3914076572d543e22b551866cbad16dc4ee8f6
MD5 cbcbe950eaefd5b61c6a579ed1311c86
BLAKE2b-256 8a56c24eeabfb5746f434a872c858e6412c2587b881061990a15a281645a9737

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 295f8c1f90ad198f29530835cb8be82a8d813d58988902babbc471934112f22c
MD5 dd3e567f1fdde24bbb13457a6b7d4cba
BLAKE2b-256 1a2cc1e2bebd70dceee6002eee0357ad8fb84992c8d88350f18748cfbbc06c42

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tamp-1.1.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 165.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tamp-1.1.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d706b9526d832755c22b5a623232c52ccd5de2c46ea27b9d7289c763d76c378c
MD5 dbd9e6d06bbc971065bf2dc0cf629d5f
BLAKE2b-256 b3f13baa80c91865e5471af0cbce683b0006374283847a3d5861ba6a5b35fa60

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: tamp-1.1.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 147.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tamp-1.1.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 73c47da19aec66abb8294c1ad6f3a8cb34999dc045be2d15f49339d038dcc627
MD5 98da91cccffdf0fae3136ddb2d1af00b
BLAKE2b-256 be68c983cd8166876a9e1af59088c26f87008fd9ddd844fc76f4d6a31537a091

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e5b11ee2453e1d21d6fa058763c8e41753429c4cbfdcda589f19a8af2e62fc11
MD5 d8f4a0520ac9729f2d696278b7b77a4b
BLAKE2b-256 1c2a9401b429d863e901d52142459a9a56d6f1e1bd9ed3ee38c13ab010f10a6b

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 43e5bfdbddc28274e904afbd09c24eb99ddb5650b69f92088ef85c6b89271b74
MD5 98b35789c38543c2c4e1302af1454add
BLAKE2b-256 5fbb2ac7563b35483545adc134d3fbd6687e55df150045598ca8a3ace3ba00b1

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ccfabda9ebf3e5aaa4c01c040a1c09f8fda2d78ef4c5035630507c05826c96b0
MD5 ee1020e943a897a45cc18ae1fe23c0b1
BLAKE2b-256 47ae20cb551bc7f459bb247c672af6124e80366607945c5c7ba164ff560a7a1c

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bd3fa7cbeca51b83b1d41136ccd1aef3f657c07e657cae783047f851c6e5f7e8
MD5 1783cff9c5857c96529afe0b403af021
BLAKE2b-256 362cb48babbdbd7c40780ff04717c8d5095bb9afa74780390c628702abdf1ef4

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66605e59d993e37e9b0944dd2cbd755da0e41d929d4695eb24efd9e679678a31
MD5 2bdca030d1ef06f85742f24128ce69df
BLAKE2b-256 43ba9ec01a6f12d333014afb8353c4b8c9d50fe5713047783934c3b6f71ac83c

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9f0f7f9b2838f654f499766b7847ea94e942ed11c67fa921ea80b28185932e96
MD5 2c54df3e35066ecf22b745b00a1f93c8
BLAKE2b-256 5f8fe7a7c71851244bf58add8d1878e71845a01ec37a4659dc8a228299c9082a

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 385f51f52d8f7ff132629ba22579a4a213c9f05be0ee7b5085e62ddd9697ca72
MD5 ff801c79e767c963d670fffee814c51a
BLAKE2b-256 e537b7126aeca2a295f5e9005e7b24d71a98d954adff08066e7c7fd86d8e06f6

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1e8f69f72f37017cfd3b4e4ed687fe2708b77097482d62293099ee765f390902
MD5 da574bb279e460820c9c984838a13310
BLAKE2b-256 3d55a0c0002242448eb8b75122a64ac0e5e2e404b7e23cd2a5eba788f825deb3

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 3ba515de06b01f684cf29a0fe830569b2365f59d27dfedab298c232ed731da4f
MD5 6a9f6ad24ac1677a75fa5611d48a224a
BLAKE2b-256 2e173a3e54d03600191d6e02ea635c9ffc91bd05a7395c215b177b95fd42357e

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ad4076e62b74d012503d892b4f36cb07b802b7715747bcc1dcb1e86048c1db4f
MD5 df2944ce94abb55b6cf1044af39acb9e
BLAKE2b-256 e85eced7ac7fca40997b49d6e4fde07ebb88dabf62d77147a48dc1acd891ed33

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tamp-1.1.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 165.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tamp-1.1.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 99b34bb813e8efe0a82880603fecd8d21d4b9265c81c4ad18b082e3beb3bc124
MD5 434a4043132bd5c1ad5be79810e0c74a
BLAKE2b-256 7b753989b52d7741973dc99f3589894361b361dfe08d89515f15a0c7451ad490

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: tamp-1.1.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 147.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tamp-1.1.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 35274189ed953caa0884b2b9600d72109ae1b47fd30453134e09b97d72e81453
MD5 9175de28968c1787c77052a4217fe0d9
BLAKE2b-256 df221bb323d8dc68ab99dbd49d763568de02329ff54b6ac72484392a15e35f04

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f3cbb0680f3ce0c306e04028d9a5cad1da0f15f36fb3ad70282ef2bdd6498a12
MD5 016dc7fdfc54323c3fcb3d1c5faf850b
BLAKE2b-256 e9c1b9fa5cbdf339e1e15eee5037e44e28ab5a1d3b51b5d1e958006b06ee2a2d

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 38eb6c2d99d1bad1ce80c5ccd1f0aeb4658d6d462d76b5e616326bbbbaf5efd9
MD5 db3f14796218076ff10945c4b867ba13
BLAKE2b-256 ed45960592c4b50889086089670bd63fd0352d5e66c1d2a9705e5e32430bc849

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1e88f90d2071bbd60aeab2440b5069d6cf2177e7de7ebd3c92de17838a39270e
MD5 e2bf72baec2ee7f47bed4122bf0518a4
BLAKE2b-256 9c23539c898b994efe38f18624ecc14ccda1da5be0ac8d7da0421b124475429c

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 83590eeb655f6fb7ca96552086fb74233310aaa38771faea860a2aecfa8e4f61
MD5 acb5c100582f5c2f0e867351630d6fa5
BLAKE2b-256 9b05a407eff0ff07abf0a3c90ef056cc64258245b1c631805915c9e23b3ec8a5

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e119aabe63c52da5976f9f7803cad99b6c66ca7c555e409df25ba9ea5b1a6d69
MD5 c9815648f3e599d0c6a30c3e9a39fca3
BLAKE2b-256 950639f3964bd173801759a4a01d4d06d231c541c870b2fefc0a0b2b1e5928a5

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 87f231ec146952329db96df5a849c1794004d105766adea4c85668dffdc5180f
MD5 88cb9eabb027d5a01e44bd4e5cc57158
BLAKE2b-256 ffff94f2221dc6f98b5af049baaed97f29c86e191d72e8dc5c8a1126ca678b18

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b2879e402a1233454f64f2c0a19baf5079aa7ec9840f12e29ce0f7ab32b07576
MD5 e98258186c985c3cf1a62d4cd246c4b1
BLAKE2b-256 8d01cf1c9c8b1f0480461adada511501ed8a4298373fb70e956a73b3e46f6713

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8cde3302b3bd9d267e7e3fbc43c129b815c51e74ca44d36816adda23b61612ab
MD5 bfeaab0277eed7b3757969005bcb17e1
BLAKE2b-256 63738769bc8bf848a123b080816ba4f3683da31fea9f5db151fe0ffd5acaf105

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 d65d96ebe24fa72e795aef5b85a8d3b76a90a99a0cc1f75b49f614657102a4f5
MD5 2719d4bc8e4980246069d353024f01b0
BLAKE2b-256 4aaee6dd96f9bcd3a036ee06e96abd5059f68d3e639721b64b130e472b601916

See more details on using hashes here.

File details

Details for the file tamp-1.1.6-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.1.6-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f38833b53d29c5f334c9f752d54b635975efe37ba11e0b419b2fadbf37db431e
MD5 cc8795b04d22795fb11903dfa516d457
BLAKE2b-256 216c0cdc8c6132508c5d91f1873b873266c04f693c939f59023451bf8795e247

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page