Skip to main content

No project description provided

Project description

tamp logo

Python compat PyPi GHA Status Coverage Documentation Status

Tamp

Tamp is a low-memory, DEFLATE-inspired lossless compression library.

Features

  • Various implementations available:

    • Pure Python:

      • tamp/compressor.py, tamp/decompressor.py

      • When available, Tamp will use a python-bound C implementation for speed.

    • C library:

      • tamp/_c_src/

  • High compression ratios and low memory use.

  • Compact compression and decompression implementations.

    • Compiled C library is <4KB (compressor + decompressor).

  • Mid-stream flushing.

    • Allows for submission of messages while continuing to compress subsequent data.

  • Customizable dictionary for greater compression of small messages.

  • Convenient CLI interface.

Installation

Tamp contains 3 implementations:

  1. A desktop Cpython implementation that is optimized for readability

  2. A micropython viper implementation that is optimized for runtime performance.

  3. A C implementation (with python bindings) for accelerated desktop use and to be used in C projects.

Desktop Python

The Tamp library and CLI requires Python >=3.8 and can be installed via:

pip install tamp

MicroPython

For micropython use, there are 3 main files:

  1. tamp/__init__.py - Always required.

  2. tamp/decompressor_viper.py - Required for on-device decompression.

  3. tamp/compressor_viper.py - Required for on-device compression.

For example, if on-device decompression isn’t used, then do not include decompressor_viper.py. If manually installing, just copy these files to your microcontroller’s /lib/tamp folder.

If using mip, tamp can be installed by specifying the appropriate package-*.json file.

mip install github:brianpugh/tamp  # Defaults to package.json: Compressor & Decompressor
mip install github:brianpugh/tamp/package-compressor.json  # Compressor only
mip install github:brianpugh/tamp/package-decompressor.json  # Decompressor only

If using Belay, tamp can be installed by adding the following to pyproject.toml.

[tool.belay.dependencies]
tamp = [
   "https://github.com/BrianPugh/tamp/blob/main/tamp/__init__.py",
   "https://github.com/BrianPugh/tamp/blob/main/tamp/compressor_viper.py",
   "https://github.com/BrianPugh/tamp/blob/main/tamp/decompressor_viper.py",
]

C

Copy the tamp/_c_src/tamp folder into your project. For more information, see the documentation.

Usage

Tamp works on desktop python and micropython. On desktop, Tamp is bundled with the tamp command line tool for compressing and decompressing tamp files.

CLI

Compression

Use tamp compress to compress a file or stream. If no input file is specified, data from stdin will be read. If no output is specified, the compressed output stream will be written to stdout.

$ tamp compress --help

 Usage: tamp compress [OPTIONS] [INPUT_PATH]

 Compress an input file or stream.

╭─ Arguments ────────────────────────────────────────────────────────────────────────╮
   input_path      [INPUT_PATH]  Input file to compress or decompress. Defaults to  
                                 stdin.                                             
╰────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ──────────────────────────────────────────────────────────────────────────╮
 --output   -o      PATH                      Output file. Defaults to stdout.      
 --window   -w      INTEGER RANGE [8<=x<=15]  Number of bits used to represent the  
                                              dictionary window.                    
                                              [default: 10]                         
 --literal  -l      INTEGER RANGE [5<=x<=8]   Number of bits used to represent a    
                                              literal.                              
                                              [default: 8]                          
 --help                                       Show this message and exit.           
╰────────────────────────────────────────────────────────────────────────────────────╯

Example usage:

tamp compress enwik8 -o enwik8.tamp  # Compress a file
echo "hello world" | tamp compress | wc -c  # Compress a stream and print the compressed size.

The following options can impact compression ratios and memory usage:

  • window - 2^window plaintext bytes to look back to try and find a pattern. A larger window size will increase the chance of finding a longer pattern match, but will use more memory, increase compression time, and cause each pattern-token to take up more space. Try smaller window values if compressing highly repetitive data, or short messages.

  • literal - Number of bits used in each plaintext byte. For example, if all input data is 7-bit ASCII, then setting this to 7 will improve literal compression ratios by 11.1%. The default, 8-bits, can encode any binary data.

Decompression

Use tamp decompress to decompress a file or stream. If no input file is specified, data from stdin will be read. If no output is specified, the compressed output stream will be written to stdout.

 $ tamp decompress --help

 Usage: tamp decompress [OPTIONS] [INPUT_PATH]

 Decompress an input file or stream.

╭─ Arguments ────────────────────────────────────────────────────────────────────────╮
   input_path      [INPUT_PATH]  Input file. If not provided, reads from stdin.     
╰────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ──────────────────────────────────────────────────────────────────────────╮
 --output  -o      PATH  Output file. Defaults to stdout.                           
 --help                  Show this message and exit.                                
╰────────────────────────────────────────────────────────────────────────────────────╯

Example usage:

tamp decompress enwik8.tamp -o enwik8
echo "hello world" | tamp compress | tamp decompress

Python

The python library can perform one-shot compression, as well as operate on files/streams.

import tamp

# One-shot compression
string = b"I scream, you scream, we all scream for ice cream."
compressed_data = tamp.compress(string)
reconstructed = tamp.decompress(compressed_data)
assert reconstructed == string

# Streaming compression
with tamp.open("output.tamp", "wb") as f:
    for _ in range(10):
        f.write(string)

# Streaming decompression
with tamp.open("output.tamp", "rb") as f:
    reconstructed = f.read()

Benchmark

In the following section, we compare Tamp against:

  • zlib, a python builtin gzip-compatible DEFLATE compression library.

  • heatshrink, a data compression library for embedded/real-time systems. Heatshrink has similar goals as Tamp.

All of these are LZ-based compression algorithms, and tests were performed using a 1KB (10 bit) window. Since zlib already uses significantly more memory by default, the lowest memory level (memLevel=1) was used in these benchmarks. It should be noted that higher zlib memory levels will having greater compression ratios than Tamp. Currently, there is no micropython-compatible zlib or heatshrink compression implementation, so these numbers are provided simply as a reference.

Compression Ratio

The following table shows compression algorithm performance over a variety of input data sourced from the Silesia Corpus and Enwik8. This should give a general idea of how these algorithms perform over a variety of input data types.

dataset

raw

tamp

zlib

heatshrink

enwik8

100,000,000

51,635,633

56,205,166

56,110,394

build/silesia/dickens

10,192,446

5,546,761

6,049,169

6,155,768

build/silesia/mozilla

51,220,480

25,121,385

25,104,966

25,435,908

build/silesia/mr

9,970,564

5,027,032

4,864,734

5,442,180

build/silesia/nci

33,553,445

8,643,610

5,765,521

8,247,487

build/silesia/ooffice

6,152,192

3,814,938

4,077,277

3,994,589

build/silesia/osdb

10,085,684

8,520,835

8,625,159

8,747,527

build/silesia/reymont

6,627,202

2,847,981

2,897,661

2,910,251

build/silesia/samba

21,606,400

9,102,594

8,862,423

9,223,827

build/silesia/sao

7,251,944

6,137,755

6,506,417

6,400,926

build/silesia/webster

41,458,703

18,694,172

20,212,235

19,942,817

build/silesia/x-ray

8,474,240

7,510,606

7,351,750

8,059,723

build/silesia/xml

5,345,280

1,681,687

1,586,985

1,665,179

Tamp usually out-performs heatshrink, and is generally very competitive with zlib. While trying to be an apples-to-apples comparison, zlib still uses significantly more memory during both compression and decompression (see next section). Tamp accomplishes competitive performance while using around 10x less memory.

Memory Usage

The following table shows approximately how much memory each algorithm uses during compression and decompression.

Action

tamp

zlib

heatshrink

Compression

(1 << windowBits)

(1 << (windowBits+2)) + 7 KB

(1 << windowBits)

Decompression

(1 << windowBits)

(1 << windowBits) + 7 KB

(1 << windowBits)

Both tamp and heatshrink have a few dozen bytes of overhead in addition to the primary window buffer, but are implementation-specific and ignored for clarity here.

Runtime

As a rough benchmark, here is the performance (in seconds) of these different compression algorithms on the 100MB enwik8 dataset. These tests were performed on an M1 Macbook Air.

Action

tamp (Python Reference)

tamp (C)

zlib

heatshrink (with index)

heatshrink (without index)

Compression

109.5

16.45

4.84

6.22

41.729

Decompression

54.0

0.70

0.98

0.82

0.82

Heatshrink v0.4.1 was used in these benchmarks. When heathshrink uses an index, an additional (1 << (windowBits + 1)) bytes of memory are used, tripling the memory requirement. Tamp could use a similar indexing to increase compression speed, but has chosen not to to focus on the primary goal of a low-memory compressor.

To give an idea of Tamp’s speed on an embedded device, the following table shows compression/decompression in bytes/second of the first 100KB of enwik8 on a pi pico (rp2040) at the default 125MHz clock rate. This isn’t exactly an apples-to-apples comparison because the C benchmark does not use a filesystem (and thusly, reduced overhead) nor dynamic memory allocation, but is good enough to get the idea across.

Action

tamp (Micropython Viper)

tamp (C)

Compression

~4,300

~28,500

Decompression

~42,000

~1,042,524

Binary Size

To give an idea on the resulting binary sizes, Tamp and other libraries were compiled for the Pi Pico (armv6m). All libraries were compiled with -O3. Numbers reported in bytes.

Library

Compressor

Decompressor

Compressor + Decompressor

Tamp (micropython)

4429

4205

7554

Tamp (C)

2008

1972

3864

Heatshrink

2956

3876

6832

uzlib

2355

3963

6318

Heatshrink doesn’t include a high level API; in an apples-to-apples comparison the Tamp library would be even smaller.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tamp-1.3.0.tar.gz (35.2 kB view details)

Uploaded Source

Built Distributions

tamp-1.3.0-cp312-cp312-win_amd64.whl (164.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

tamp-1.3.0-cp312-cp312-win32.whl (146.9 kB view details)

Uploaded CPython 3.12 Windows x86

tamp-1.3.0-cp312-cp312-musllinux_1_1_x86_64.whl (874.6 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

tamp-1.3.0-cp312-cp312-musllinux_1_1_ppc64le.whl (890.1 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ppc64le

tamp-1.3.0-cp312-cp312-musllinux_1_1_i686.whl (827.2 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

tamp-1.3.0-cp312-cp312-musllinux_1_1_aarch64.whl (863.2 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

tamp-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (872.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

tamp-1.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (888.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

tamp-1.3.0-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (829.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (861.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

tamp-1.3.0-cp312-cp312-macosx_12_0_x86_64.whl (177.2 kB view details)

Uploaded CPython 3.12 macOS 12.0+ x86-64

tamp-1.3.0-cp312-cp312-macosx_12_0_arm64.whl (169.9 kB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

tamp-1.3.0-cp311-cp311-win_amd64.whl (163.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

tamp-1.3.0-cp311-cp311-win32.whl (146.4 kB view details)

Uploaded CPython 3.11 Windows x86

tamp-1.3.0-cp311-cp311-musllinux_1_1_x86_64.whl (866.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

tamp-1.3.0-cp311-cp311-musllinux_1_1_ppc64le.whl (890.6 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

tamp-1.3.0-cp311-cp311-musllinux_1_1_i686.whl (823.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

tamp-1.3.0-cp311-cp311-musllinux_1_1_aarch64.whl (860.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

tamp-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (859.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tamp-1.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (891.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

tamp-1.3.0-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (824.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (857.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tamp-1.3.0-cp311-cp311-macosx_12_0_x86_64.whl (175.9 kB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

tamp-1.3.0-cp311-cp311-macosx_12_0_arm64.whl (169.3 kB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tamp-1.3.0-cp310-cp310-win_amd64.whl (163.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

tamp-1.3.0-cp310-cp310-win32.whl (146.6 kB view details)

Uploaded CPython 3.10 Windows x86

tamp-1.3.0-cp310-cp310-musllinux_1_1_x86_64.whl (811.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

tamp-1.3.0-cp310-cp310-musllinux_1_1_ppc64le.whl (832.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

tamp-1.3.0-cp310-cp310-musllinux_1_1_i686.whl (777.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

tamp-1.3.0-cp310-cp310-musllinux_1_1_aarch64.whl (806.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

tamp-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (787.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tamp-1.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (831.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

tamp-1.3.0-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (753.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (780.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tamp-1.3.0-cp310-cp310-macosx_12_0_x86_64.whl (175.7 kB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

tamp-1.3.0-cp310-cp310-macosx_12_0_arm64.whl (169.4 kB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tamp-1.3.0-cp39-cp39-win_amd64.whl (164.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

tamp-1.3.0-cp39-cp39-win32.whl (147.8 kB view details)

Uploaded CPython 3.9 Windows x86

tamp-1.3.0-cp39-cp39-musllinux_1_1_x86_64.whl (817.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

tamp-1.3.0-cp39-cp39-musllinux_1_1_ppc64le.whl (837.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

tamp-1.3.0-cp39-cp39-musllinux_1_1_i686.whl (783.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

tamp-1.3.0-cp39-cp39-musllinux_1_1_aarch64.whl (810.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

tamp-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (792.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tamp-1.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (838.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

tamp-1.3.0-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (760.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (785.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tamp-1.3.0-cp39-cp39-macosx_12_0_x86_64.whl (177.1 kB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

tamp-1.3.0-cp39-cp39-macosx_12_0_arm64.whl (170.6 kB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tamp-1.3.0-cp38-cp38-win_amd64.whl (165.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

tamp-1.3.0-cp38-cp38-win32.whl (147.7 kB view details)

Uploaded CPython 3.8 Windows x86

tamp-1.3.0-cp38-cp38-musllinux_1_1_x86_64.whl (828.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

tamp-1.3.0-cp38-cp38-musllinux_1_1_ppc64le.whl (850.7 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

tamp-1.3.0-cp38-cp38-musllinux_1_1_i686.whl (793.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

tamp-1.3.0-cp38-cp38-musllinux_1_1_aarch64.whl (820.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

tamp-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (804.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tamp-1.3.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (841.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

tamp-1.3.0-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (770.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (796.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tamp-1.3.0-cp38-cp38-macosx_12_0_x86_64.whl (176.6 kB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

tamp-1.3.0-cp38-cp38-macosx_12_0_arm64.whl (169.9 kB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

File details

Details for the file tamp-1.3.0.tar.gz.

File metadata

  • Download URL: tamp-1.3.0.tar.gz
  • Upload date:
  • Size: 35.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for tamp-1.3.0.tar.gz
Algorithm Hash digest
SHA256 c022c268e35c82f7c12d54165451bd82ab7bb03dfa974cdd8b63ef122a01e348
MD5 de72a7030af542c411cf220715225ee3
BLAKE2b-256 2e63e2e450e38020b08e73ec7474beb2691984b853368e6673816e8a158198ac

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: tamp-1.3.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 164.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for tamp-1.3.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8478bdc11c87970f9b008c622e00316d813e8db2c27047cb03e6c67c03e95085
MD5 5beee365ef8ffda74c6deb6f1ceb2b78
BLAKE2b-256 b53c036186aaca79cc5fd25a408129504d9df7958bd0bac6f643fb04c93f7a54

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: tamp-1.3.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 146.9 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for tamp-1.3.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 5370ad1a05007d5dd0248346129329f4f36e19d4e3a8baee140da12ae0e93f0a
MD5 4d28e471b93649bca78e0ad4a741f04a
BLAKE2b-256 2e55935d83cf09529fad10d336284a866db296d01683359c87dc004f596bf484

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 09eafc6ecf53b28b7f68f7d3f2ce3c33bee0c5cad2f5337514a8b7a7517118b7
MD5 0f9b98fe6642f01beb6a3af9d2696ae0
BLAKE2b-256 6d06e63fc133f3cdaf8c9f3301ce117240d3fe3a74c0094852a8aca92b418675

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp312-cp312-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp312-cp312-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 5c42ffc8eab293a419e96a7d17de92c44311f630f7b92461b7ab4022224bc8d1
MD5 ce7ebd1cc92ba551cfcb451683b747a1
BLAKE2b-256 0a256f4c4656499fd3f53ab5ae91203f676e79af88caee0f38fb86c4b9093ede

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1ba0fa0ef9184b43b302e72d7b65068cf64c68bc87180e439ea7f94be61cea8b
MD5 5dfc989242f169e76ef61601b6785d00
BLAKE2b-256 26c3af7e0aead2e08d6a606c88b8f1564a000449af38162b09dc9569fccc5555

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cf981d5ecce1616d6657c2690d899d133a7dcf16b3d461180eb42126ddcb6d44
MD5 c6a350180d16046894b1aa35153ff479
BLAKE2b-256 fbba068c24205c1b2f6d0ac2195506f5fe7462fb80caba57925cb3b85ecfc087

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4bf687e9981e6c2e203884607853be85d884190cd4368a8d560be960273a8f8a
MD5 820f93a6cffbd79d656841c4caa64840
BLAKE2b-256 5c619456fd31af52db6c5b896bc81732796c3a24958bd80743d51fa3109f8dac

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 39f3774b442f626cdb7e05a7b29b2e3d234863dd65e8cdfa1893059db872cdcd
MD5 2f1c667c20b15b2258ac8970bffe3aec
BLAKE2b-256 1d0ca38d4ac42f522b76d8558036b5efdff69e480538dd13930cfcdcec7a9d25

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 960e8544af66aa8da0f01d00b1a09493c16cb286783ae863c68634e95b797484
MD5 90856cc491f3b6d1d046bfdd367cff27
BLAKE2b-256 05c2d64c1506dde37147f9a1cfb0aa73fc6c9de902b830617a3d74320b494461

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 58266d9881f755f19c52bf0c3ed31a89b18ea3d7974ee4bebd65c4a461416991
MD5 d595acc436e8d404f0f9070d220dadb4
BLAKE2b-256 7107b829701640141061aea30f9f076a34e5444c48786f6f75a6b0e7c1ae76d8

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 016e4f5314b96c68f731dbb5dbbb1c9a162d0b4d7da6511b7b34f28e7e74bea1
MD5 fe7242ca2f817c5fc9c75d2b5921d2dd
BLAKE2b-256 54ea7e23d8423ea2267510b193f322ae96570cb2c1afc049a4e4c3ef17649b9c

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 eebad7b118c48b29f9dc0ad7104a430011e8d0a0bdb92bc17fcfb2e7a5849552
MD5 5d1baec83008d5bc4c298b7ce14feb78
BLAKE2b-256 f935e15298ccd521104063fca27b3650d113110fd2a12b0ff6e4e744b10d1a03

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tamp-1.3.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 163.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for tamp-1.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 275bcfb1e663985a2a06a62a9c4290062d506ffc54033a9becc4f1708b511ea2
MD5 e20341a3af2894f27b86e34548554225
BLAKE2b-256 2c021224c223c86ffc86b211bcf504d528391800b3ac7b3d1c8d8163606daa0b

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: tamp-1.3.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 146.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for tamp-1.3.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 12180ba8e3e6673df0b0bc7b9ee0095573312ab3d07c44a81e1162b764fe5917
MD5 4546b314e93a9be0fba4ac1aea3bf64a
BLAKE2b-256 7a72153ba121f98258d5ecabd791a5afa6c69994778ef00e4b352851e8bc65b4

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3eb629de742dbba4fe0e6308df643e0d2ed23ac3be8d6e53de53090cf3a379e6
MD5 b5d7eb4575e76d852326d9ce0475fd10
BLAKE2b-256 cc5a5c99305c3a52b45671e63d92e5416c06b84da7d65f59a3be4d060b62f104

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 69bebb8a5315dce8732142a303976f9d5605e9d0ff0e742c13a714326d6bbaf7
MD5 d015edac471a8c07ba9da14e64864d6f
BLAKE2b-256 0c550effa1e3c5f2cc68db1fc9b5a99b0de3cd19a816f425240d88e503147e55

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e3b0573111084beac39f3eaed0a76bdd3f57deaee6df998227cb92db9302fa19
MD5 7c8e468347257c927eb48c4c08d79d17
BLAKE2b-256 b19658684254c2310c77bb949a70b398b131bc54c8e3f138bea896ce68572e62

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d727cfb1c79f0ff42365561446e710fda115095edccbd79da5daaeff69882e6b
MD5 305cdaa2c102bfb304ced6983f21263f
BLAKE2b-256 7015dca95a1294584ee648515336d18ccb932cd671e4d51c6728e66ac1e7498d

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1bd2a5d0df841cfd33050c85e6adcad7b27d9bc5271a10c4a8f6cb4d2bfcfa2a
MD5 c2c53e8870715dc157b22fbc62f18fbb
BLAKE2b-256 9ffd24921f05d9524dcd58cb5c0fcda7bdb4874a847e8984c4c6b1142b2b0f45

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ed6db3139a9ee13fd0475a2bdbd34bd21b35abac3fe120d434b544dedc533da7
MD5 c873fbdb77d508253324920ebafdfb01
BLAKE2b-256 bb19c00597fcaa98236aee1bd229c8d9c7d736daf5f64216218979aec86b10ee

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8ccde47b2f535462bcbea26953f7c90b6978b151560c3166b557b7e8d10c5068
MD5 31fd30bc8d330c6c77ee36d706e04837
BLAKE2b-256 06d7e536108b95a59cf0b2e3129bafec8b5f4b300621445ca753b6758cf20d02

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e95c6fab8f03d200691b6f09cdaf26088c01ab39f339ccfcd5e9ca24ddd68e17
MD5 af3f2d9cb0c787dbc45becc83c4cc3cb
BLAKE2b-256 84a6572cd34a3d6d3b42823c7d74ea3f25453129c3d93bc2c77465498474d0a4

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 4a3019d948deee851357d9e9fd80afa771710ceb61d957a5ca1871252a19400b
MD5 e3ad9950dac67e6c24614b563f7bd904
BLAKE2b-256 57904a559affb120fcd00f5a0aa2a0e5d2e26c4e1db5f1adf7ee237d1cf4f987

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 bdc05d3c0511080864f2160be5952201bfb9548e8d2dff3ca1752b2b8d2ca4b2
MD5 11ebcdd36e5137a28a42f449edff3648
BLAKE2b-256 3181222d7814dc344782251f206e9569169f37ee3658a9284a03a60180f97dc1

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tamp-1.3.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 163.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for tamp-1.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a7e7580c450b05976f2077b3175bdf3bb9639eb57c6a6a5b631d112b17352fda
MD5 b73cd72bd14b61f59bb0266764b520dd
BLAKE2b-256 80e65ac15a7c7f113d419430f5398c1d370950a1dd552b409fda22e9279916f4

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: tamp-1.3.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 146.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for tamp-1.3.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 46f00b098c42663389a58ba4bbe6a5a98a25a7252fe932c7eeba2ff7c31946d2
MD5 477d286a44b49f986460e234865b4981
BLAKE2b-256 1bbb951bdd1ebe85f2a4a66e76ebe4b87528daac5a69528c69f1c4bf20f52afd

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 403f69e6b977642abbe552c12c1bac6faca4c819e34401dfaa221bc493f08586
MD5 023ba266bbec5f3c4db038759e060029
BLAKE2b-256 2d7be3282e11c94777b123b4b5244694ef26b50de67aa2d547f5d649c45ef3a5

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 0033e3919fd0830f2c6ed4d8bfa09d7baa857722f1b51786346ef8d1c56774d3
MD5 e8a9e41f935753334205069ea62cd692
BLAKE2b-256 2c3c8ab15b4097a9ba2001dd8fd826c9679d1a70934e43878ec47a1bbde35c3a

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b496586f327c475a9a17803673b33bc1d8066dfee8a3e459e430d48163f3e33c
MD5 221c5026cdad348ce5b031cfdfbec1f5
BLAKE2b-256 7cf6287d4deaef97a4570e489a8aa747a3b656170dd9b1cbe22aa403b899f3fd

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0a5f15921c7a3f04070414c0732159cfa6a6cd2c3bf1fa693c33376001a1f571
MD5 fc65bb33c33db912acaca8184cb98d08
BLAKE2b-256 74941adcb3b8b4177891c27870fd85c1942af01f8c9a8423e967dd462d6b202d

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f3e708f043d2dd0f2ba32b93699d316d1c1a385f7632a0735b00f3139b6c386
MD5 9986ddee05b5b7b1a783302d8984a388
BLAKE2b-256 006ff2bb1e35cc460f2706dfe8301dd6713d8e8aa9f1d319804343714d732437

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3d39799c70b14002a5f1843da01fbb7278b5d4f927d6ed0d6cbd32bec32acbb2
MD5 f88a1dffc7695517edfba6cc4e8a1274
BLAKE2b-256 8cbd7741b4dcfa604ed0e8ad625decfc371dba001282ec3834a9856d92e62163

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0dd07709eada9790a22ccd2caa7001f0daf3b928ebac2ef41f28247808034d8c
MD5 069388330515aeeaa49088635fdeb85e
BLAKE2b-256 4e33ae5499087b05d29f4c403eb1c6900ad2386f25b3ac5239375da5dc3fab39

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 92e690c858ce474156b61fc9b95e7ac1ad2ed5c810afaf8d17ddef52d8e6f377
MD5 79e0fe10d7d90e9f3b8259093f417eb6
BLAKE2b-256 ddf7115319abe69db2bf0e8cb290925e4f0cd00a8c57cf68bcf50ef809cf309a

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 bf1ff123d2ddbf992810d9c3d05597de4b87d7a3c7c761488e8cc663ec2f924a
MD5 aae2808ae861c20087857675e9cc6ca7
BLAKE2b-256 6b3db148ec5cde8a83f309b6184cf8d8ddb123ac577b96fbbc6a27990f785e11

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 271771ba9b5245c90933a492b87492dd19367bba7867d83d795e99ebe7b3aec4
MD5 fbc6312a571aab9f7ded80c01bce194f
BLAKE2b-256 e028e97b6ae7a3c4672cc38e8297d1b5d3a87be977f459b11b084521e4dcb50b

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tamp-1.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 164.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for tamp-1.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 88542e0f4512ea48d327687c2ece70e98d0d4ea72761f42f9e35e0cae147fad5
MD5 8b2fe98aa6dd2826818e7dadc30d8987
BLAKE2b-256 0408b7e8cbabc20eef75998264048514d6a6fc3a6f63ecf9507000fd9fadcb66

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: tamp-1.3.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 147.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for tamp-1.3.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ba92bb355066471ee04d9746d06421a13e124e616caf2088e38ca220728ae87f
MD5 57cf94f41e2fcf2f969587b470fd6390
BLAKE2b-256 36fc9e8e9e7b100a4235355fc276fb1cc3198fbbddcdda4d884530237f3f958a

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e707a9dddb0b1634cce88ecfe33e44a64d88606c385ab9846d42ed4bdd1344cb
MD5 cd57b28b7762935023f2067abe532511
BLAKE2b-256 1c5155806474514c392d50f5a3e42cc18274bf9f711593313d25b90d6032f322

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 f67f828e72d4d320c6765b41505aadfc6c69013e43e48cbb601493627f012118
MD5 b1e4e4ee6d36db80e12a0c8787573bba
BLAKE2b-256 fb7fd3ce604e108e7e8d847009f78fe0ff24bcde36f20b56da604581d1ac656e

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e3ae8f17c93c3e4d05a48e4489c6498e683687bbe5f10ee7d29abf4c80a725ed
MD5 56ff3e80126ace73583aa80fb7ca524b
BLAKE2b-256 5af082833330c03d06a91fdb29edf2cb2d217ebf36436aae8d4ae61f8686c7ff

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d4c969715eadf79046fbfb628d36fe25bf5f236a3babe6816b4b3ce7d960505e
MD5 7813368e3ea147ae318627d1d5653aed
BLAKE2b-256 f0712be6f256245d7868e849cefa176b7d06a4fc4ffd27aef6c42b7bf1fb448f

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 af26c4c32dc3dfec39005d38c563201618d17ab9d104a9d9ae95ca2a1e2c35d6
MD5 0c38a8b3e34073dfa70456cc72a5fa9e
BLAKE2b-256 caf4263417b453c29404e67bd506f73f0a6be0d4300a648eba0d6c52f708c243

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 557f407155c1330a8ccafcec5f0c02cd78d1e7df9133a75b1474f30315aecda9
MD5 889c407a32bc239b9c1669da2b53503b
BLAKE2b-256 5acd64f802590d88a94467bbd015fc55235341dfa0edec5b039c120fe308f95c

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8764b73acd0fe74a4da02f7ae25733d873193fe820e096ccb6b093fa94da848d
MD5 1fe18ed3482a2d8faad20adcb9b9eb2a
BLAKE2b-256 96b531e1cbb3d9c61eb9f02fa20ea7f993d6d47e09f9acc2ffb20dc97e1f7381

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 af11447ad3765a8bdf6e14f03304ac412c31b140fc1c454c878b3c30d01bcea4
MD5 23b04ada4db34e4fdc1226c2974c0c32
BLAKE2b-256 5c70e73da51e5a154e70588b1a70dbb6054ec06802f847528679460f6054c689

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 23dfcf8f6553aa26ff1f58cdfa545dd084ad4f958e88e4f826116bf5d7b2efeb
MD5 282a59c394e7b77db06c60ec78c123d5
BLAKE2b-256 6321bf110bb8aeb1b4216e38feceb74ed5cd60fd4f814813634f645354b7642e

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 9c06f53b1aa928480a1650a6e90544504b3f736fa7e0ad0b118980eb672069fe
MD5 07a544f1b56239a5a4bdb0008d558358
BLAKE2b-256 8e381bd59cf010e61c19f7607bfe95c1e48d34ce0901c27d3bff70261863da14

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tamp-1.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 165.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for tamp-1.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b60214472e257f2a92b6ec0bd0891f63553fd312b20988af2d0036e35a42c734
MD5 7501725dfd51a98e19fdc81769dac554
BLAKE2b-256 d61d8fd9deebea4e43f2fb6bec173202a3faeedd05f49f632bb3a0aab03a2c1d

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: tamp-1.3.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 147.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for tamp-1.3.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 23938aac96006d84545dbd69ef9a294e52dd5bb83ac28a7e4b87007e03ad3a35
MD5 864835b6af3985eaeda387e74c5727fa
BLAKE2b-256 9c8bf8907f0a6fce373d5ae21121e60937b92bff86ef6aebdacd6f1ce96b86f1

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 98c8cd5d3a15f530d5eb5acfd18ba012040d733355e8cf59f0b0bb3d0a146319
MD5 1671cbe5cd6d40a40f0562e915010f15
BLAKE2b-256 bcc96f8651b9d6045bbecadcb152ef64c10efd91a8451cc59105e3c208de61f8

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 8a9cd074b6b982ff9b971a9d5baeaa0f581da4fcfb453753a46fe036f362e624
MD5 7e00d775a1b875b02e22355c4a46c9d1
BLAKE2b-256 0cd7203a7df04d47738d15ebeb76b76bdd631a5fdf9a08650ba0931d4af6b894

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0a5f586270c54c14da06b9d2c457d0e4d708ccd2c6d991bd615a31c0269eebff
MD5 9c3215a1a49517e7d409fee462485b6f
BLAKE2b-256 a84985f54e0714c5270d6c5e07ec0d152ea6e4394423b8ef4ad5c9fbbcf659ff

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4aade8c03c3df2f6b8b6ad109bf01e4caa18e1a6a74c64c6e98b7f6490e7cae6
MD5 84617d7acc39f26daedd532e3efce20c
BLAKE2b-256 6333a234d96161cf963b043dfbc005617f1630ce486f93924fb51764917d63a5

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ad5ef3bdddbf70f780baf2d0d77b231e5b23ff89b75c8e415ea4ca1d36a7a76
MD5 70c23022978f47678be398107885b4fd
BLAKE2b-256 4ad80a532cb5ca7bb3b29648979d26479b4774e40fd4a1c4ce8f70bfc0caafee

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 12ad35f9c2fc293d78d7e83abf774c9e42d961552cb22f10076b82e645dca1e2
MD5 eb620e4cba81e6c4c0d4bf3ee9e9a8e2
BLAKE2b-256 afec8af15781602c5ff6e8d91ffe73b4e376484b213c62a9237320f286d94c19

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cb349fc329d7cd56a37621a511b608ae5e30f5273d4fb63f8eb17fd39dab59aa
MD5 f1115f4d4aa303e107af3e352cd6cd23
BLAKE2b-256 59361f83654cf322cf17f9ffa63bc3e1a5e6214e85d2ceff28ef57c4965f3c7f

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c9d41dce3fed3f6d26c1f5db12fc15db33b002b396c32d02b990e273787580b3
MD5 ace9a9feab189b3459bc514826e0c6ab
BLAKE2b-256 d57abeb09dbd83699f51e57408e4cf754af3793322043f0573f58b3b1b7ca074

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 58d4b0ca963d3d92eaf7c9e35dfacd6375f8d6ebc49d16646a45741b3de20735
MD5 1f96415628a92574d13817b958ab27be
BLAKE2b-256 dccbdb145ea18e5b83257ff0b019108b9cde687f7705551d2681045ffc3c9d09

See more details on using hashes here.

File details

Details for the file tamp-1.3.0-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.3.0-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 c627bb9463396bd474276aaa46f1bf7bdb28be092ecc4061b6711a9af7fef99a
MD5 ac51827f56c7f83bdc1493ecfd25095e
BLAKE2b-256 dd406793512ff2d899a6f1c7856723a559b95e4e08b8b907499949bee76cd24b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page