Skip to main content

No project description provided

Project description

tamp logo

Python compat PyPi GHA Status Coverage Documentation Status

Tamp

Tamp is a low-memory, DEFLATE-inspired lossless compression library intended for embedded targets.

Tamp delivers the highest data compression ratios, while using the least amount of RAM and firmware storage.

Documentation: https://tamp.readthedocs.io/en/latest/

Source Code: https://github.com/BrianPugh/tamp

Features

  • Various language implementations available:

    • Pure Python reference:

      • tamp/__init__.py, tamp/compressor.py, tamp/decompressor.py

      • pip install tamp will use a python-bound C implementation optimized for speed.

    • Micropython:

      • Native Module (suggested micropython implementation).

        • mpy_bindings/

      • Viper.

        • tamp/__init__.py, tamp/compressor_viper.py, tamp/decompressor_viper.py

    • C library:

      • tamp/_c_src/

  • High compression ratios, low memory use, and fast.

  • Compact compression and decompression implementations.

    • Compiled C library is <4KB (compressor + decompressor).

  • Mid-stream flushing.

    • Allows for submission of messages while continuing to compress subsequent data.

  • Customizable dictionary for greater compression of small messages.

  • Convenient CLI interface.

Installation

Tamp contains 4 implementations:

  1. A reference desktop CPython implementation that is optimized for readability (and not speed).

  2. A Micropython Native Module implementation (fast).

  3. A Micropython Viper implementation (not recommended, please use Native Module).

  4. A C implementation (with python bindings) for accelerated desktop use and to be used in C projects (very fast).

This section instructs how to install each implementation.

Desktop Python

The Tamp library and CLI requires Python >=3.8 and can be installed via:

pip install tamp

MicroPython

MicroPython Native Module

Tamp provides pre-compiled native modules that are easy to install, are small, and are incredibly fast.

Download the appropriate .mpy file from the release page.

  • Match the micropython version.

  • Match the architecture to the microcontroller (e.g. armv6m for a pi pico).

Rename the file to tamp.mpy and transfer it to your board. If using Belay, tamp can be installed by adding the following to pyproject.toml.

[tool.belay.dependencies]
tamp = "https://github.com/BrianPugh/tamp/releases/download/v1.4.0/tamp-1.4.0-mpy1.22-armv6m.mpy"

MicroPython Viper

NOT RECOMMENDED, PLEASE USE NATIVE MODULE

For micropython use, there are 3 main files:

  1. tamp/__init__.py - Always required.

  2. tamp/decompressor_viper.py - Required for on-device decompression.

  3. tamp/compressor_viper.py - Required for on-device compression.

For example, if on-device decompression isn’t used, then do not include decompressor_viper.py. If manually installing, just copy these files to your microcontroller’s /lib/tamp folder.

If using mip, tamp can be installed by specifying the appropriate package-*.json file.

mip install github:brianpugh/tamp  # Defaults to package.json: Compressor & Decompressor
mip install github:brianpugh/tamp/package-compressor.json  # Compressor only
mip install github:brianpugh/tamp/package-decompressor.json  # Decompressor only

If using Belay, tamp can be installed by adding the following to pyproject.toml.

[tool.belay.dependencies]
tamp = [
   "https://github.com/BrianPugh/tamp/blob/main/tamp/__init__.py",
   "https://github.com/BrianPugh/tamp/blob/main/tamp/compressor_viper.py",
   "https://github.com/BrianPugh/tamp/blob/main/tamp/decompressor_viper.py",
]

C

Copy the tamp/_c_src/tamp folder into your project. For more information, see the documentation.

Usage

Tamp works on desktop python and micropython. On desktop, Tamp is bundled with the tamp command line tool for compressing and decompressing tamp files.

CLI

Compression

Use tamp compress to compress a file or stream. If no input file is specified, data from stdin will be read. If no output is specified, the compressed output stream will be written to stdout.

$ tamp compress --help
Usage: tamp compress [ARGS] [OPTIONS]

Compress an input file or stream.

╭─ Parameters ───────────────────────────────────────────────────────────────────────────────╮
 INPUT,--input    -i  Input file to compress. Defaults to stdin.                            
 OUTPUT,--output  -o  Output compressed file. Defaults to stdout.                           
 --window         -w  Number of bits used to represent the dictionary window. [default: 10] 
 --literal        -l  Number of bits used to represent a literal. [default: 8]              
╰────────────────────────────────────────────────────────────────────────────────────────────╯

Example usage:

tamp compress enwik8 -o enwik8.tamp  # Compress a file
echo "hello world" | tamp compress | wc -c  # Compress a stream and print the compressed size.

The following options can impact compression ratios and memory usage:

  • window - 2^window plaintext bytes to look back to try and find a pattern. A larger window size will increase the chance of finding a longer pattern match, but will use more memory, increase compression time, and cause each pattern-token to take up more space. Try smaller window values if compressing highly repetitive data, or short messages.

  • literal - Number of bits used in each plaintext byte. For example, if all input data is 7-bit ASCII, then setting this to 7 will improve literal compression ratios by 11.1%. The default, 8-bits, can encode any binary data.

Decompression

Use tamp decompress to decompress a file or stream. If no input file is specified, data from stdin will be read. If no output is specified, the compressed output stream will be written to stdout.

$ tamp decompress --help
Usage: tamp decompress [ARGS] [OPTIONS]

Decompress an input file or stream.

╭─ Parameters ───────────────────────────────────────────────────────────────────────────────╮
 INPUT,--input    -i  Input file to decompress. Defaults to stdin.                          
 OUTPUT,--output  -o  Output decompressed file. Defaults to stdout.                         
╰────────────────────────────────────────────────────────────────────────────────────────────╯

Example usage:

tamp decompress enwik8.tamp -o enwik8
echo "hello world" | tamp compress | tamp decompress

Python

The python library can perform one-shot compression, as well as operate on files/streams.

import tamp

# One-shot compression
string = b"I scream, you scream, we all scream for ice cream."
compressed_data = tamp.compress(string)
reconstructed = tamp.decompress(compressed_data)
assert reconstructed == string

# Streaming compression
with tamp.open("output.tamp", "wb") as f:
    for _ in range(10):
        f.write(string)

# Streaming decompression
with tamp.open("output.tamp", "rb") as f:
    reconstructed = f.read()

Benchmark

In the following section, we compare Tamp against:

  • zlib, a python builtin gzip-compatible DEFLATE compression library.

  • heatshrink, a data compression library for embedded/real-time systems. Heatshrink has similar goals as Tamp.

All of these are LZ-based compression algorithms, and tests were performed using a 1KB (10 bit) window. Since zlib already uses significantly more memory by default, the lowest memory level (memLevel=1) was used in these benchmarks. It should be noted that higher zlib memory levels will having greater compression ratios than Tamp. Currently, there is no micropython-compatible zlib or heatshrink compression implementation, so these numbers are provided simply as a reference.

Compression Ratio

The following table shows compression algorithm performance over a variety of input data sourced from the Silesia Corpus and Enwik8. This should give a general idea of how these algorithms perform over a variety of input data types.

dataset

raw

tamp

zlib

heatshrink

enwik8

100,000,000

51,635,633

56,205,166

56,110,394

build/silesia/dickens

10,192,446

5,546,761

6,049,169

6,155,768

build/silesia/mozilla

51,220,480

25,121,385

25,104,966

25,435,908

build/silesia/mr

9,970,564

5,027,032

4,864,734

5,442,180

build/silesia/nci

33,553,445

8,643,610

5,765,521

8,247,487

build/silesia/ooffice

6,152,192

3,814,938

4,077,277

3,994,589

build/silesia/osdb

10,085,684

8,520,835

8,625,159

8,747,527

build/silesia/reymont

6,627,202

2,847,981

2,897,661

2,910,251

build/silesia/samba

21,606,400

9,102,594

8,862,423

9,223,827

build/silesia/sao

7,251,944

6,137,755

6,506,417

6,400,926

build/silesia/webster

41,458,703

18,694,172

20,212,235

19,942,817

build/silesia/x-ray

8,474,240

7,510,606

7,351,750

8,059,723

build/silesia/xml

5,345,280

1,681,687

1,586,985

1,665,179

Tamp usually out-performs heatshrink, and is generally very competitive with zlib. While trying to be an apples-to-apples comparison, zlib still uses significantly more memory during both compression and decompression (see next section). Tamp accomplishes competitive performance while using around 10x less memory.

Memory Usage

The following table shows approximately how much memory each algorithm uses during compression and decompression.

Action

tamp

zlib

heatshrink

deflate (micropython)

Compression

(1 << windowBits)

(1 << (windowBits+2)) + 7 KB

(1 << (windowBits + 1))

(1 << windowBits)

Decompression

(1 << windowBits)

(1 << windowBits) + 7 KB

(1 << (windowBits + 1))

(1 << windowBits)

All libraries have a few dozen bytes of overhead in addition to the primary window buffer, but are implementation-specific and ignored for clarity here. Tamp uses significantly less memory than ZLib, and half the memory of Heatshrink.

Runtime

As a rough benchmark, here is the performance (in seconds) of these different compression algorithms on the 100MB enwik8 dataset. These tests were performed on an M1 Macbook Air.

Action

tamp (Python Reference)

tamp (C)

zlib

heatshrink (with index)

heatshrink (without index)

Compression

109.5

16.45

4.84

6.22

41.729

Decompression

76.0

0.142

0.98

0.82

0.82

Heatshrink v0.4.1 was used in these benchmarks. When heathshrink uses an index, an additional (1 << (windowBits + 1)) bytes of memory are used, resulting in 4x more memory-usage than Tamp. Tamp could use a similar indexing to increase compression speed, but has chosen not to to focus on the primary goal of a low-memory compressor.

To give an idea of Tamp’s speed on an embedded device, the following table shows compression/decompression in bytes/second of the first 100KB of enwik8 on a pi pico (rp2040) at the default 125MHz clock rate. The C benchmark does not use a filesystem nor dynamic memory allocation, so it represents the maximum speed Tamp can achieve. In all tests, a 1KB window (10 bit) was used.

Action

tamp (Micropython Viper)

tamp (Micropython Native Module)

tamp (C)

deflate.DeflatIO (micropython builtin)

Compression

~4,300

~12,770

~28,500

~6,715

Decompression

~42,000

~644,010

~1,042,524

~146,477

Tamp resulted in a 51637 byte archive, while Micropython’s builtin deflate resulted in a larger 59442 byte archive.

Binary Size

To give an idea on the resulting binary sizes, Tamp and other libraries were compiled for the Pi Pico (armv6m). All libraries were compiled with -O3. Numbers reported in bytes.

Library

Compressor

Decompressor

Compressor + Decompressor

Tamp (micropython viper)

4429

4205

7554

Tamp (micropython native module)

3264

3079

5537

Tamp (C)

2008

1972

3864

Heatshrink

2956

3876

6832

uzlib

2355

3963

6318

Heatshrink doesn’t include a high level API; in an apples-to-apples comparison the Tamp library would be even smaller.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tamp-1.4.0.tar.gz (37.4 kB view details)

Uploaded Source

Built Distributions

tamp-1.4.0-cp312-cp312-win_amd64.whl (168.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

tamp-1.4.0-cp312-cp312-win32.whl (150.4 kB view details)

Uploaded CPython 3.12 Windows x86

tamp-1.4.0-cp312-cp312-musllinux_1_1_x86_64.whl (897.3 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

tamp-1.4.0-cp312-cp312-musllinux_1_1_ppc64le.whl (913.4 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ppc64le

tamp-1.4.0-cp312-cp312-musllinux_1_1_i686.whl (848.2 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

tamp-1.4.0-cp312-cp312-musllinux_1_1_aarch64.whl (886.3 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

tamp-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (893.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

tamp-1.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (912.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

tamp-1.4.0-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (852.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (882.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

tamp-1.4.0-cp312-cp312-macosx_14_0_arm64.whl (173.9 kB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

tamp-1.4.0-cp312-cp312-macosx_13_0_x86_64.whl (182.0 kB view details)

Uploaded CPython 3.12 macOS 13.0+ x86-64

tamp-1.4.0-cp311-cp311-win_amd64.whl (167.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

tamp-1.4.0-cp311-cp311-win32.whl (149.7 kB view details)

Uploaded CPython 3.11 Windows x86

tamp-1.4.0-cp311-cp311-musllinux_1_1_x86_64.whl (887.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

tamp-1.4.0-cp311-cp311-musllinux_1_1_ppc64le.whl (912.9 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

tamp-1.4.0-cp311-cp311-musllinux_1_1_i686.whl (845.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

tamp-1.4.0-cp311-cp311-musllinux_1_1_aarch64.whl (882.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

tamp-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (881.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tamp-1.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (914.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

tamp-1.4.0-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (846.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (877.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tamp-1.4.0-cp311-cp311-macosx_14_0_arm64.whl (172.2 kB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

tamp-1.4.0-cp311-cp311-macosx_13_0_x86_64.whl (180.0 kB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

tamp-1.4.0-cp310-cp310-win_amd64.whl (167.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

tamp-1.4.0-cp310-cp310-win32.whl (150.2 kB view details)

Uploaded CPython 3.10 Windows x86

tamp-1.4.0-cp310-cp310-musllinux_1_1_x86_64.whl (831.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

tamp-1.4.0-cp310-cp310-musllinux_1_1_ppc64le.whl (853.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

tamp-1.4.0-cp310-cp310-musllinux_1_1_i686.whl (799.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

tamp-1.4.0-cp310-cp310-musllinux_1_1_aarch64.whl (827.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

tamp-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (806.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tamp-1.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (851.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

tamp-1.4.0-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (773.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (799.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tamp-1.4.0-cp310-cp310-macosx_14_0_arm64.whl (172.5 kB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

tamp-1.4.0-cp310-cp310-macosx_13_0_x86_64.whl (180.3 kB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

tamp-1.4.0-cp39-cp39-win_amd64.whl (168.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

tamp-1.4.0-cp39-cp39-win32.whl (151.5 kB view details)

Uploaded CPython 3.9 Windows x86

tamp-1.4.0-cp39-cp39-musllinux_1_1_x86_64.whl (837.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

tamp-1.4.0-cp39-cp39-musllinux_1_1_ppc64le.whl (858.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

tamp-1.4.0-cp39-cp39-musllinux_1_1_i686.whl (804.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

tamp-1.4.0-cp39-cp39-musllinux_1_1_aarch64.whl (831.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

tamp-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (812.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tamp-1.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (859.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

tamp-1.4.0-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (779.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (805.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tamp-1.4.0-cp39-cp39-macosx_14_0_arm64.whl (173.7 kB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

tamp-1.4.0-cp39-cp39-macosx_13_0_x86_64.whl (181.5 kB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

tamp-1.4.0-cp38-cp38-win_amd64.whl (168.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

tamp-1.4.0-cp38-cp38-win32.whl (151.3 kB view details)

Uploaded CPython 3.8 Windows x86

tamp-1.4.0-cp38-cp38-musllinux_1_1_x86_64.whl (848.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

tamp-1.4.0-cp38-cp38-musllinux_1_1_ppc64le.whl (871.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

tamp-1.4.0-cp38-cp38-musllinux_1_1_i686.whl (812.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

tamp-1.4.0-cp38-cp38-musllinux_1_1_aarch64.whl (840.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

tamp-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (823.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tamp-1.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (863.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

tamp-1.4.0-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (789.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (814.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tamp-1.4.0-cp38-cp38-macosx_14_0_arm64.whl (173.6 kB view details)

Uploaded CPython 3.8 macOS 14.0+ ARM64

tamp-1.4.0-cp38-cp38-macosx_13_0_x86_64.whl (181.1 kB view details)

Uploaded CPython 3.8 macOS 13.0+ x86-64

File details

Details for the file tamp-1.4.0.tar.gz.

File metadata

  • Download URL: tamp-1.4.0.tar.gz
  • Upload date:
  • Size: 37.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tamp-1.4.0.tar.gz
Algorithm Hash digest
SHA256 0641f7e8d09b4d764cc7422413a6ec1f6455bf87b0d6f5907aaa659d4875e83f
MD5 7291bc8c85f4cdd4d9ecda3e097702d1
BLAKE2b-256 b2e733789761d6644566f26ed2fcb431d1926ee87adeb0b1da4b1f80dc675eed

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: tamp-1.4.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 168.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tamp-1.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2d16a2d2a52a5f1d5914bd3a1da0607013861a60cfddff39fb7ae59f5a309fe9
MD5 374946424feb2489cda289b343b26e84
BLAKE2b-256 208b3830de4d9bb64f5696833fab07d510f416ab006263574843017d31297db2

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: tamp-1.4.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 150.4 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tamp-1.4.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 82b974a739cee0524ed65adcbb49d4a80666906713f7259fc3974fdaf9bcddfb
MD5 52c2c8e186590e57339e66ac7bf2cbf7
BLAKE2b-256 824e5b2944aca4ec6f4b1d0f87e2e68411ae3d57d75118932110a7a8f3c65140

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b87bbe40c7d3c62478bfd465039b4a423a4aeb8a77d6ad3f8cca2a9f5f36cb6e
MD5 5a67a090b053198c34f43c5e4ce709f0
BLAKE2b-256 0bffd82a5b3b964cf7ebf4e580458e560ea87727fa4f934806362e42295c7016

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp312-cp312-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp312-cp312-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 aa56795579ef9cbe7286a11b3c7360b885da313e8e19d813984c8c55e741eee5
MD5 95e7bb0fea90bcf5a8736751c9bb69a4
BLAKE2b-256 b7296ba8ede9149b6940cdf683c36ec8d13f09cdd702c3a49bec729b9eb3a5f0

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 95a83ad92c0d2aee427b41f6cde7fdee51871aa5dda6d56da31851b3bd7a53ac
MD5 1a591468d0cd432d9ded7d9e552a3015
BLAKE2b-256 2d95d82d8f99476ec1dbbc19dcd3f78594ab3c9dda5c6e97892497dc58086d7e

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 21c01615ece0c3319abc4e8e01369d8345d46865125ba7f32678da872647866e
MD5 04b9ae8ff14decc0e1d66531a3476d91
BLAKE2b-256 d705da518e454256c0b2d0f6a6179bec802f5c2d3b5943351dea04dc34dbb647

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85562c682448343e7ec5af14b58fbc430b6e4e52ba0657eef3fdce1e2a5d1e28
MD5 ca71fc3504e3e7c6aae561c415fc5593
BLAKE2b-256 1132e6626148e9b5bcc48b5b90f59760030c49604c9ac90be0e21059acb0342a

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a338a8ec1335fa78e1f35d4ddca519d7970307d3679b21381c4b76eb438d0f3c
MD5 b7e29e7967e90bf374685cd965fb4ad2
BLAKE2b-256 94945f8fa81df18438254b53758d63741c9befd174b38d0f390ecfe49e853d96

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 794f2570debc441a85973c0f35be9286a78f4520b0a40511ea7b67d5942004ec
MD5 c530939cab232595939550247bbb256e
BLAKE2b-256 59913960f4659e29d53122b88355ebc49b59a62cb2152ba9b65b91d77cf96831

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d3c1cc6ed7c7d8858124ccb3024b3596817d14ee60df6e41617bde7d73b6ee08
MD5 990128ee6f220e54894b411f32e2c9b3
BLAKE2b-256 5d07fbeda1212a58b5212d5e54390765d4ab75865459d8a8ef292cd598eb628a

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 a5405bb3b03d3c3cc64c441cc1fd17afee4da87600a7fae05fafc85280f4b505
MD5 6deddaf946000ff2dd4ce56666029c6c
BLAKE2b-256 e87e6a29f825f4fa2c8aeff448b01f3866be644735a513abba13087678abf2cb

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 b27042a12cc7fe711d05e84e9570ca5b026638ecb3119c9e3c863802fe0c338c
MD5 9f95e386174adb467525896d5185173b
BLAKE2b-256 29e588b300598e97dd27cfade346ecc9135e87229bffe7a8b41e82231914d5e9

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tamp-1.4.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 167.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tamp-1.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 47324fe2faa7f3be7e5de39c62e303657160731f98c5ebe9176304cfde0ef05a
MD5 63b05d075bc457ad38dc5c51583270a1
BLAKE2b-256 0bc0d5880d1bc26ca1def9f220283516751dbfe164c7c0b12ae2acad9dcbcd2d

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: tamp-1.4.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 149.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tamp-1.4.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 8aef0883b66985709d7ede8e2a7d192cf05fe8039ce08df21664a7991968c18a
MD5 c94551dc8dec7db1ec08598d80f89ab8
BLAKE2b-256 fbf5deabcf34e41a3e429ec5051f51229c743ca41e60b78abd9d6fcd69d8138c

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c74cf052c24dec7ff8d747a2b95ce90500ab3182f532848cd912022065f0ac7f
MD5 968c13b28eaac65f417fff9955171aa5
BLAKE2b-256 628720d983cd97d755de151951310e99b7a63f595471dd8feb7012a48a17ff03

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 8989bbc7a5ce6d9e802e4fa1ce431c9e289b8b08d9fd9575f83f61ae9b8404a2
MD5 7cb199d30f0b926e087fc6667f9cfb84
BLAKE2b-256 9336d102656753fa1a87366498f8abde26b28f6c9b2daaef2ccd1f2f8f61574b

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0c21a928e9b23b1028adc568c542877b56924cd51bf45ed35fba45be5200d6bb
MD5 942acc5a66cef1fa0dca36bf14147822
BLAKE2b-256 098a6e2ae1b871c666e4e86d19d9e69bf6ccf1d2add4c584d5d33aba62450fa6

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 323aae13b3a5b66ee98d68b133456d984e5718108006ad2a8b8cbf9a7caa2b52
MD5 31e823f017968623ad0b7399d7754657
BLAKE2b-256 e3748b511cdc2a0613fb43b9a8e62d77543ae446e2fadd6e521721779eaa7d4c

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1f4f61c0214a48444a1efa85907a2c834c3260f023250ea05ae7c6833b8823de
MD5 261dc51b48a5fda6c02d2a6a6dc9d0a6
BLAKE2b-256 192b9389dc5109f1313225b448ad6e3c8bad2cadc203644e524f7cbcf676041e

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a752dc6bd3c7099438de49a091c5f47a6b6cdc1a654c1fce3703889e18d9d4b9
MD5 e3734f557c5360338429444930526b49
BLAKE2b-256 9f69731f65a01bdfc93cba82b91a2c1544bd4636caaad41a8eb21b891cfdc6e9

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 22494690204ebf1923496f09994c5a3aa12e5ec3dbf434ce13323c6e5a54d8ad
MD5 baf1b6cc469b429727cf722571e14c44
BLAKE2b-256 64b01c0490a05d89f5e357e4fd497a832da042bbac20d9bed2d8ad8953de71c6

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 292a13cd18145dbeb24de70db39a530dcc5766d60a5fc18f04df4713cfcf15c9
MD5 8f8a6dbbb3c885f6634d0823532a195c
BLAKE2b-256 ad8c7c39d5ee8770a6913b538b3a2a3bc8969172054b656a0094d401e676f3ae

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 66faa45aa19466eb0e3ee5c7fce192054ade0eee4e59793f544619aeabc9835d
MD5 b11212b2700c2cca916d34427c5dcbd7
BLAKE2b-256 6d8e99222a68131378df57acbba44aced134139c3578ab010650221474f3c7f6

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 6ca3ce5f011dbb0dd3e930320555b6ef8854489278552ba970cf421317aec03a
MD5 4c9386ab65e361ae6092976b8008cf5a
BLAKE2b-256 cf156a71145b119efe5a674f69ddf8fac9f6803c18d3b5c44c1dce6100824adc

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tamp-1.4.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 167.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tamp-1.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 409559178414e576530c3962e8af299f17592e35087493f3f2940584bc502c08
MD5 3141c4a7e665d39651698a871c083b55
BLAKE2b-256 aabde27605eac3b0279eca78b8f53072e1b5cfe83ae922858b2c309fa27f2aca

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: tamp-1.4.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 150.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tamp-1.4.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 334d85954f139660adfe85c65d3def1a5df69f8fb82272654e341310a07de814
MD5 90ee23c482141612cbbde5f5911014fb
BLAKE2b-256 1a3c08711f67c795b7623ba2e59402740612070af0a794247b299dca77a05730

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a2ed3f4b1968ebe56dddc75f3b4da90c0f412aaf3f55d1e61e637d4bb8006396
MD5 b1bfb49b504d4de0f4571fa0de1443df
BLAKE2b-256 2e97137c74d032e5ba660eaebf9e30776fb28acc87033b1b6b9b86e18075b0bc

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 cc2226b3ad7ae28b2d1a17f1a6fa51474ec42848356c94fd2abdb99b03ede9f1
MD5 38664154942ea2dab9f289d25acc6aef
BLAKE2b-256 622e2436b136121cbb03bdc8eef6162dab176bbe57116692f595a08951cbc327

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 281648f38532b8a111d796734a30222285fa57f3e2a0f97d68b47cdb2c3e2491
MD5 074e9aa5f5251b983b782cb0c5f80619
BLAKE2b-256 3a830bf89f26c6801f1b4c28471db8b6f2bae2e8950289876cb584a31aa51f99

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cb8942fa50a1c775cc8db3c67351ac0e99f545f9afb274bb3ed3246ca070aae2
MD5 db3315b13388c90ba717d5b8078faf58
BLAKE2b-256 d8789d848cf9c8465134e667cc47e002d3ab0e19424dec208a78d4f8509ea072

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b878a1c0c5ad6c8a9d36d64881dc38095467d2fafbe826952bb3a2c5b3d4b70
MD5 77901024b791f320909d1312af6a117c
BLAKE2b-256 eae1ab82cfd6ffb00e92322086779d594ddfaee7dc0c78c79b61b2ca4dc4992e

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9532a18cdce817b14b8024cb54ab62f9e894a7ea0a02d537654f402701f397b8
MD5 814c19bbd9d031804fc05b8e694b2523
BLAKE2b-256 eff4aebe810da578a9f9e5c0416f9dd94449ada5232af0680c933164db23ab61

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a266adeccef889d1f881d1c79971b0936e42721dac0bc3323e86fdf47b650566
MD5 643c4d11badae8a2cc1e43d50ac02b51
BLAKE2b-256 f148b13116ff8aa0e4eecade653625f6ddf4b52b2e15780146a1ebfa012e8a22

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 401d7330daf5eb912eac48b8651d79165f8ceb6dab30777792f17d431fbfa3ed
MD5 caadc194b5cd879dfc964c214e6d3c3d
BLAKE2b-256 045550fbe70abb57bf80886020ebdaeb0abffefb37c41086fac9da445cee0a40

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 fc3091d2503e3210a158047675934fde603e0f8eea532ffd298fe0c6740d6c22
MD5 84bf881472288c31d065235efccd6663
BLAKE2b-256 eb22c23c3c9b2d915c39703a1b2756debbd1deedad867ea72e1c123dadc82a37

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 222f70528028077736c305f54beba7f27c10dcbeebbf966532a86c5702a45c71
MD5 3bb4ac7ae67f8fa9703a972515510833
BLAKE2b-256 bf060f31af9da9f04616f22f7c2e2349e95ed9e061c46b59e600373391685a97

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tamp-1.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 168.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tamp-1.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a4045f057e9450e377dcadf0f730e0c5bee193ecabea890540bd3484d030e3de
MD5 c972edcae5b78d756f771b22e49c1596
BLAKE2b-256 9484a38c055181ce0f3bbe69bb241318c798e6e034df96d0521cdaa891927892

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: tamp-1.4.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 151.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tamp-1.4.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d213c670ef3b1f1841cdcea80243ad6f846b898c9316d61ada18363c5188b6a9
MD5 9d43d293a536309de9036dbd0c521c6f
BLAKE2b-256 034a1059ea7687d9aaaac4d73777f6df58d96e6d16cb91635399d42e4df0e5ed

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 adfa5679f88ed2cff095f3ed7979f2c92e9c602aa8e0bbd977760295dc186d19
MD5 93a0dee0b2484cf3374cd9f0198859ae
BLAKE2b-256 f00bc6d696eb3c0b0ad52ae43313d53130cfaacee91631460f721c21c025f94f

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 79b55f23b9d2d2c5906356af9bf391e97212b41d7e976a69aa222dc7fe96e4aa
MD5 47ef71da4f97ff64e35bedad589ed814
BLAKE2b-256 4e58af71e3c12a4ef75b1e7be6d616d747236ac774e66545b8a6401ea6a51934

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 56a1404a55d39f8a98b1786061828e04e8be6460283dfa68f7d686c91c1ea72e
MD5 ebdf4768d0f2cc21537adf38dcecff59
BLAKE2b-256 a62fe364d42868b9e3d154096ae48e2231202191875aab4b9db790d2477d74f4

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 56679544a90adad75db2eb21b770d850c5e4dae6d4555b83ca93abf5df81aa60
MD5 f2dfa42120aa8e2c7557c106afd4b6da
BLAKE2b-256 f3a3b7e4f9e8022a7df7105694081d7b4d2d81883b8650d72c57695bbefc764f

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8dd64ded2354a6f0572d185850473797ada7eb2511e1d732d78fdb66a9632c2
MD5 de95f3020497e2039e23ad16c42b8a8a
BLAKE2b-256 bfa9e0f0dcc77edf7f3008e3ed18f3c184fb8f54946ce775c427f7e02aec861a

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 10fbfad3b1c7b93d9b77306d4edef98780e73c1db09d3d282489d291ff5dcafb
MD5 9f443bf571c48259070ab5b4fc086f62
BLAKE2b-256 8fbb3f6165ad2d85dda8b95ef8a39ab5409c1fc739bfeac1e8d77a7492061d55

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8637e113b7af48eb48c8c9cbb20f871e002614940ddd3079a5c93437217667dd
MD5 0905a1c52a6d912218524fa7a2617261
BLAKE2b-256 359e6b30f41febd6233a73299c203b9add7df4773945241cab99283b7cbacc4d

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e15f57924fbf6e59d43bad0cc6348410c8d972575f3b11f60c8cb4346f4f15d5
MD5 e413ebac8f6911c29d449778bf524c9a
BLAKE2b-256 87d0c10273ba88d10ac2367a22b2a0a4a4c3baf9efb66ddcc4e206bdb1867407

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 48e28c58b281e1fc00b18fae0a3cf43ac08c8797d653b35c557e3b14f9bdd09e
MD5 c583cf2d2ec70299fc60707c38af0fe8
BLAKE2b-256 0e9bcbcf422cddb32d64dafdb6d05911b12c82e3732edd115b2fc3be0764afeb

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 a104951bbfe06678fc55aab2a325dfdbc6c957e0c0a3ad3c5af9a1d720803dd4
MD5 0c05b218e5e704ebf45f38c9b557518c
BLAKE2b-256 901d39d5d582b6e755fecc0271bfefd9b7e92410e5617bc8e7ff22cb4b0dcba8

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tamp-1.4.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 168.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tamp-1.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0bd0b6c08866536f686943a28273624644911cf588bce0dd52cfa26bf205bda8
MD5 984e233a22803efcc0224ff5060c914e
BLAKE2b-256 c047be0e7695a6621e9ec9c93610eb31d88293eb3aaa6f4c762add9b1e7914e8

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: tamp-1.4.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 151.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tamp-1.4.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 57057b5d01a168bf984e16c1ecbe2e99cedee92a478eb30a690325beb64d1cd8
MD5 46a4486923c8c3cb6b904d3e15439bac
BLAKE2b-256 f2fc559384eb014caf90dbf3ac428e3a97434f3d32b225857e42409c07735967

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0fa867bf47eb959a76b86d3ef61ffbf4462f4c7e2a2d89b76619f52c37ae8b7c
MD5 7e900d65880ba2e6fafcad5da567bddb
BLAKE2b-256 56bb42a68a2216b7b7a47eb65cac97afaf11d4e5d45496b80f5c97548ec29561

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 8d6a459a200c122d2a7e18d0ec121724243e9ecc0f604860a75ed7dff3340c44
MD5 6baac7e91f65328b2605ca14ce26a952
BLAKE2b-256 888a63c1134c511b11b1e77775601eebfa7e727a6e4b92c1626e20407eea40ba

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f2cff4b1f024bcb849424640a8ebf9657739f680da3afb45a9b27615a50d5816
MD5 1b5f88012ea8881dfcb7fc7eba54d188
BLAKE2b-256 07783e675066c6dce1428631704be4c75b1bb7183470bf83a7848c7ab3c0f031

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 464b09197b1e1e8ed80c20dc013d90968c8ba9c2a9ee38bc9e6893108bc0fda5
MD5 2174ea5035c426057eb286d0b681f39b
BLAKE2b-256 fa1fb85d0ad91980d4cdf4cf87be1c955232c7187ab0b71c8cc8003769ff017f

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2dcd3c42caef59a2f9bc3aea6d5365747a96048cc413e70c0e287fff6e6e076a
MD5 44c1fc422831786351d846e899821ed3
BLAKE2b-256 fcecb567d28ee7e41007cda62225a0274da036884fd57072c7cf110d39697c4a

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ebe2f05538bb09a2bbb3e2468650dded302821e2e7e6c452c1bfc97b1637c82c
MD5 3848b85826aa28c5a39b1fe20cdc08a1
BLAKE2b-256 3758c7d627d629e3ce14118edd9ecd5b6853d76b936d87634deb50f48475772a

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3ea8b7e81490c244f1b3524e1c581a9ab8b4a2ed4f94def6cadd69afa4af1f1d
MD5 cf7e6478e772503494aa4b3a7488fda2
BLAKE2b-256 578e69743f61ca3f63b982e0a2c4070c817f5cc23331571e1edc8cf2920aae98

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4ead2c006eeab3dcc6d18c27508d1c6cd272b85b2baf94539da0afdb9bdc022
MD5 44fa4ce965e2466fbf91840bb03fbcc7
BLAKE2b-256 27fccb7834bf741a928a997ea5b5bf5b0c783f2dc70b57a10783b8a763c8cf98

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp38-cp38-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp38-cp38-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 d33185ccca1496d965279a465b7b0d33812e56bd5336eef24dd02d8cfd89b581
MD5 cac1ed8b4ec4c1d9706ce7250f1110ca
BLAKE2b-256 8ab5d0cc9f9a099f6b2110fb0d82ac603082829321b5ccce2e8b4e606833a90d

See more details on using hashes here.

File details

Details for the file tamp-1.4.0-cp38-cp38-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.4.0-cp38-cp38-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 d621c8bd9d3f111f52b1d331d9ce3dbfbe7abf4312dcb3be96bca50b0799d3b4
MD5 4e1b8c7bebe51ef49ad5ea134569f1ec
BLAKE2b-256 28193f194fdc7403f671cd921b4716c558704ee37f8ee43a5cc104f9cda176d6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page