Skip to main content

a pipeline framework for streaming processing

Project description

Pipeline is a data streaming framework supporting Pulsar/Kafka

Generator

Generator is to be used when developing a data source in our pipeline. A source will produce output without input. A crawler can be seen as a generator.

>>> from pipeline import Generator, Message
>>>
>>> class MyGenerator(Generator):
...     def generate(self):
...         for i in range(10):
...             yield {'id': i}
>>>
>>> generator = MyGenerator('generator', '0.1.0', description='simple generator')
>>> generator.parse_args("--kind MEM --out-topic test".split())
>>> generator.start()
>>> [r.dct['id'] for r in generator.destination.results]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Processor

Processor is to be used to process input. Modification will be in-place. A processor can produce one output for each input, or no output.

>>> from pipeline import Processor, Message
>>>
>>> class MyProcessor(Processor):
...     def process(self, dct_or_dcts):
...         if isinstance(dct_or_dcts, list):
...             print('SHOULD NOT BE HERE')
...         else:
...             dct_or_dcts['processed'] = True
...         return None
>>>
>>> processor = MyProcessor('processor', '0.1.0', description='simple processor')
>>> config = {'data': [{'id': 1}]}
>>> processor.parse_args("--kind MEM --in-topic test --out-topic test".split(), config=config)
>>> processor.start()
>>> [r.dct['id'] for r in processor.destination.results]
[1]

Splitter

Splitter is to be used when writing to multiple outputs. It will take a function to generate output topic based on the processing message, and use it when writing output.

>>> from pipeline import Splitter, Message
>>>
>>> class MySplitter(Splitter):
...     def get_topic(self, dct):
...         return '{}-{}'.format(self.destination.topic, dct['id'])
...
...     def process(self, dct_or_dcts):
...         if isinstance(dct_or_dcts, list):
...             print('SHOULD NOT BE HERE')
...         else:
...             dct_or_dcts['processed'] = True
...         return None
>>>
>>> splitter = MySplitter('splitter', '0.1.0', description='simple splitter')
>>> config = {'data': [{'id': 1}]}
>>> splitter.parse_args("--kind MEM --in-topic test --out-topic test".split(), config=config)
>>> splitter.start()
>>> [r.dct['id'] for r in splitter.destinations['test-1'].results]
[1]

Usage

## Writing a Worker

Choose Generator, Processor or Splitter to subclass from.

## Environment Variables

Application accepts following environment variables:

environment command line variable argument options PIPELINE –kind KAFKA, PULSAR, FILE PULSAR –pulsar pulsar url TENANT –tenant pulsar tenant NAMESPACE –namespace pulsar namespace SUBSCRIPTION –subscription pulsar subscription KAFKA –kafka kafka url GROUPID –group-id kafka group id INTOPIC –in-topic topic to read OUTTOPIC –out-topic topic to write to

## Custom Code

Define add_arguments to add new arguments to worker.

Define setup to run initialization code before worker starts processing messages. setup is called after command line arguments have been parsed. Logic based on options (parsed arguments) goes here.

## Options

## Errors

The value None above is error you should return if dct or dcts is empty. Error will be sent to topic errors with worker information.

Credits

Yifan Zhang (yzhang at hbku.edu.qa)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tanbih-pipeline-0.0.1.tar.gz (26.1 kB view details)

Uploaded Source

Built Distribution

tanbih_pipeline-0.0.1-py3-none-any.whl (30.7 kB view details)

Uploaded Python 3

File details

Details for the file tanbih-pipeline-0.0.1.tar.gz.

File metadata

  • Download URL: tanbih-pipeline-0.0.1.tar.gz
  • Upload date:
  • Size: 26.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.7

File hashes

Hashes for tanbih-pipeline-0.0.1.tar.gz
Algorithm Hash digest
SHA256 42f31b75f552e4d5fafb8948928357bc895e7497841ee02498c5c11e5f9084b7
MD5 606ace4000f3a026089f8f7b93c2620c
BLAKE2b-256 fcf37e0fccbf3560831d3b47c53e913ae82d88a88c95011a0c487505220a58ab

See more details on using hashes here.

File details

Details for the file tanbih_pipeline-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: tanbih_pipeline-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 30.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.7

File hashes

Hashes for tanbih_pipeline-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4f74948c5a2d2291a48a890e6d3878dc3ac35fe34e9d1c69da75dd910d6a0eb1
MD5 18ed4784899f1ec8591246c462cd9df5
BLAKE2b-256 e6c0baa1a2b82da8c59db8c3fa6bd7f949e61fd0bf392165652a55340a4895e2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page