Skip to main content

a pipeline framework for streaming processing

Project description

https://badge.fury.io/py/tanbih-pipeline.svg Documentation Status

Pipeline is a data streaming framework supporting Pulsar/Kafka

Generator

Generator is to be used when developing a data source in our pipeline. A source will produce output without input. A crawler can be seen as a generator.

>>> from pipeline import Generator, Message
>>>
>>> class MyGenerator(Generator):
...     def generate(self):
...         for i in range(10):
...             yield {'id': i}
>>>
>>> generator = MyGenerator('generator', '0.1.0', description='simple generator')
>>> generator.parse_args("--kind MEM --out-topic test".split())
>>> generator.start()
>>> [r.get('id') for r in generator.destination.results]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Processor

Processor is to be used to process input. Modification will be in-place. A processor can produce one output for each input, or no output.

>>> from pipeline import Processor, Message
>>>
>>> class MyProcessor(Processor):
...     def process(self, msg):
...         msg.update({'processed': True})
...         return None
>>>
>>> processor = MyProcessor('processor', '0.1.0', description='simple processor')
>>> config = {'data': [{'id': 1}]}
>>> processor.parse_args("--kind MEM --in-topic test --out-topic test".split(), config=config)
>>> processor.start()
>>> [r.get('id') for r in processor.destination.results]
[1]

Splitter

Splitter is to be used when writing to multiple outputs. It will take a function to generate output topic based on the processing message, and use it when writing output.

>>> from pipeline import Splitter, Message
>>>
>>> class MySplitter(Splitter):
...     def get_topic(self, msg):
...         return '{}-{}'.format(self.destination.topic, msg.get('id'))
...
...     def process(self, msg):
...         msg.update({
...             'processed': True,
...         })
...         return None
>>>
>>> splitter = MySplitter('splitter', '0.1.0', description='simple splitter')
>>> config = {'data': [{'id': 1}]}
>>> splitter.parse_args("--kind MEM --in-topic test --out-topic test".split(), config=config)
>>> splitter.start()
>>> [r.get('id') for r in splitter.destinations['test-1'].results]
[1]

Usage

## Writing a Worker

Choose Generator, Processor or Splitter to subclass from.

## Environment Variables

Application accepts following environment variables:

environment command line variable argument options PIPELINE –kind KAFKA, PULSAR, FILE PULSAR –pulsar pulsar url TENANT –tenant pulsar tenant NAMESPACE –namespace pulsar namespace SUBSCRIPTION –subscription pulsar subscription KAFKA –kafka kafka url GROUPID –group-id kafka group id INTOPIC –in-topic topic to read OUTTOPIC –out-topic topic to write to

## Custom Code

Define add_arguments to add new arguments to worker.

Define setup to run initialization code before worker starts processing messages. setup is called after command line arguments have been parsed. Logic based on options (parsed arguments) goes here.

## Options

## Errors

The value None above is error you should return if dct or dcts is empty. Error will be sent to topic errors with worker information.

Credits

Yifan Zhang (yzhang at hbku.edu.qa)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tanbih-pipeline-0.3.0.tar.gz (54.4 kB view details)

Uploaded Source

Built Distribution

tanbih_pipeline-0.3.0-py3-none-any.whl (92.7 kB view details)

Uploaded Python 3

File details

Details for the file tanbih-pipeline-0.3.0.tar.gz.

File metadata

  • Download URL: tanbih-pipeline-0.3.0.tar.gz
  • Upload date:
  • Size: 54.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.7

File hashes

Hashes for tanbih-pipeline-0.3.0.tar.gz
Algorithm Hash digest
SHA256 a1e9715fcaa3bd8e1dd2a3fd9775a8dc95c8750069ab067d647799d8b44099cf
MD5 274d53f2c012a2e56d9cb48e05f29a05
BLAKE2b-256 cbabf280f24619009260324fc3669577bc9960271206f65c07fa6c45e5292ea5

See more details on using hashes here.

File details

Details for the file tanbih_pipeline-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: tanbih_pipeline-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 92.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.7

File hashes

Hashes for tanbih_pipeline-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 da886de011e48d1aedbbd1bf2176ead5d0742d2b519a4b120cbb577884c2043e
MD5 6ee39435a2d35f836c26dfdc7f04d1ec
BLAKE2b-256 8ad9065756686184b698eb8b5cfd629f0c82cd17b20c5154dccd0804394622d3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page