Skip to main content

a pipeline framework for streaming processing

Project description

https://badge.fury.io/py/tanbih-pipeline.svg Documentation Status

Pipeline is a data streaming framework supporting Pulsar/Kafka

Generator

Generator is to be used when developing a data source in our pipeline. A source will produce output without input. A crawler can be seen as a generator.

>>> from pipeline import Generator, Message
>>>
>>> class MyGenerator(Generator):
...     def generate(self):
...         for i in range(10):
...             yield {'id': i}
>>>
>>> generator = MyGenerator('generator', '0.1.0', description='simple generator')
>>> generator.parse_args("--kind MEM --out-topic test".split())
>>> generator.start()
>>> [r.get('id') for r in generator.destination.results]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Processor

Processor is to be used to process input. Modification will be in-place. A processor can produce one output for each input, or no output.

>>> from pipeline import Processor, Message
>>>
>>> class MyProcessor(Processor):
...     def process(self, msg):
...         msg.update({'processed': True})
...         return None
>>>
>>> processor = MyProcessor('processor', '0.1.0', description='simple processor')
>>> config = {'data': [{'id': 1}]}
>>> processor.parse_args("--kind MEM --in-topic test --out-topic test".split(), config=config)
>>> processor.start()
>>> [r.get('id') for r in processor.destination.results]
[1]

Splitter

Splitter is to be used when writing to multiple outputs. It will take a function to generate output topic based on the processing message, and use it when writing output.

>>> from pipeline import Splitter, Message
>>>
>>> class MySplitter(Splitter):
...     def get_topic(self, msg):
...         return '{}-{}'.format(self.destination.topic, msg.get('id'))
...
...     def process(self, msg):
...         msg.update({
...             'processed': True,
...         })
...         return None
>>>
>>> splitter = MySplitter('splitter', '0.1.0', description='simple splitter')
>>> config = {'data': [{'id': 1}]}
>>> splitter.parse_args("--kind MEM --in-topic test --out-topic test".split(), config=config)
>>> splitter.start()
>>> [r.get('id') for r in splitter.destinations['test-1'].results]
[1]

Usage

## Writing a Worker

Choose Generator, Processor or Splitter to subclass from.

## Environment Variables

Application accepts following environment variables:

environment command line variable argument options PIPELINE –kind KAFKA, PULSAR, FILE PULSAR –pulsar pulsar url TENANT –tenant pulsar tenant NAMESPACE –namespace pulsar namespace SUBSCRIPTION –subscription pulsar subscription KAFKA –kafka kafka url GROUPID –group-id kafka group id INTOPIC –in-topic topic to read OUTTOPIC –out-topic topic to write to

## Custom Code

Define add_arguments to add new arguments to worker.

Define setup to run initialization code before worker starts processing messages. setup is called after command line arguments have been parsed. Logic based on options (parsed arguments) goes here.

## Options

## Errors

The value None above is error you should return if dct or dcts is empty. Error will be sent to topic errors with worker information.

Credits

Yifan Zhang (yzhang at hbku.edu.qa)

Project details


Release history Release notifications | RSS feed

This version

0.3.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tanbih-pipeline-0.3.3.tar.gz (55.0 kB view details)

Uploaded Source

Built Distribution

tanbih_pipeline-0.3.3-py3-none-any.whl (88.5 kB view details)

Uploaded Python 3

File details

Details for the file tanbih-pipeline-0.3.3.tar.gz.

File metadata

  • Download URL: tanbih-pipeline-0.3.3.tar.gz
  • Upload date:
  • Size: 55.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.8

File hashes

Hashes for tanbih-pipeline-0.3.3.tar.gz
Algorithm Hash digest
SHA256 72d53d57115510ea414e2c3db332504d91eda7482f9e40596f3352f0b08b6557
MD5 b31798f4e7983667169035b5b03b4adc
BLAKE2b-256 f0eda634b65bbdb456401aa90ca7322e5db470041eda85d167c8d9a0ad7f7e90

See more details on using hashes here.

File details

Details for the file tanbih_pipeline-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: tanbih_pipeline-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 88.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.8

File hashes

Hashes for tanbih_pipeline-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 5d6338d8751fd6dbf224eabcfd29d814e267ae29191991bc2754caeb808c57c6
MD5 3cb26af497cf4e42836285db7de34ccd
BLAKE2b-256 cb038abcd36c42cf9eca173a8e845fcb60c132c509f35742540e18380452d734

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page