Skip to main content

a pipeline framework for streaming processing

Project description

https://badge.fury.io/py/tanbih-pipeline.svg Documentation Status

Pipeline is a data streaming framework supporting Pulsar/Kafka

Generator

Generator is to be used when developing a data source in our pipeline. A source will produce output without input. A crawler can be seen as a generator.

>>> from pipeline import Generator, Message
>>>
>>> class MyGenerator(Generator):
...     def generate(self):
...         for i in range(10):
...             yield {'id': i}
>>>
>>> generator = MyGenerator('generator', '0.1.0', description='simple generator')
>>> generator.parse_args("--kind MEM --out-topic test".split())
>>> generator.start()
>>> [r.get('id') for r in generator.destination.results]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Processor

Processor is to be used to process input. Modification will be in-place. A processor can produce one output for each input, or no output.

>>> from pipeline import Processor, Message
>>>
>>> class MyProcessor(Processor):
...     def process(self, msg):
...         msg.update({'processed': True})
...         return None
>>>
>>> processor = MyProcessor('processor', '0.1.0', description='simple processor')
>>> config = {'data': [{'id': 1}]}
>>> processor.parse_args("--kind MEM --in-topic test --out-topic test".split(), config=config)
>>> processor.start()
>>> [r.get('id') for r in processor.destination.results]
[1]

Splitter

Splitter is to be used when writing to multiple outputs. It will take a function to generate output topic based on the processing message, and use it when writing output.

>>> from pipeline import Splitter, Message
>>>
>>> class MySplitter(Splitter):
...     def get_topic(self, msg):
...         return '{}-{}'.format(self.destination.topic, msg.get('id'))
...
...     def process(self, msg):
...         msg.update({
...             'processed': True,
...         })
...         return None
>>>
>>> splitter = MySplitter('splitter', '0.1.0', description='simple splitter')
>>> config = {'data': [{'id': 1}]}
>>> splitter.parse_args("--kind MEM --in-topic test --out-topic test".split(), config=config)
>>> splitter.start()
>>> [r.get('id') for r in splitter.destinations['test-1'].results]
[1]

Usage

## Writing a Worker

Choose Generator, Processor or Splitter to subclass from.

## Environment Variables

Application accepts following environment variables:

environment command line variable argument options PIPELINE –kind KAFKA, PULSAR, FILE PULSAR –pulsar pulsar url TENANT –tenant pulsar tenant NAMESPACE –namespace pulsar namespace SUBSCRIPTION –subscription pulsar subscription KAFKA –kafka kafka url GROUPID –group-id kafka group id INTOPIC –in-topic topic to read OUTTOPIC –out-topic topic to write to

## Custom Code

Define add_arguments to add new arguments to worker.

Define setup to run initialization code before worker starts processing messages. setup is called after command line arguments have been parsed. Logic based on options (parsed arguments) goes here.

## Options

## Errors

The value None above is error you should return if dct or dcts is empty. Error will be sent to topic errors with worker information.

Credits

Yifan Zhang (yzhang at hbku.edu.qa)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tanbih-pipeline-0.6.1.tar.gz (92.1 kB view details)

Uploaded Source

Built Distribution

tanbih_pipeline-0.6.1-py3-none-any.whl (224.8 kB view details)

Uploaded Python 3

File details

Details for the file tanbih-pipeline-0.6.1.tar.gz.

File metadata

  • Download URL: tanbih-pipeline-0.6.1.tar.gz
  • Upload date:
  • Size: 92.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for tanbih-pipeline-0.6.1.tar.gz
Algorithm Hash digest
SHA256 eeffb809b9b065f3572f339764e8b11fb6d2e18aa743d77636949aa4c3f7c7dc
MD5 07ad7c2870ca775c5b55236c3dc645fb
BLAKE2b-256 608ac94fb2a85db0f6223aa4d298753fdcc18a1a31409d1a2a2db686333f4a57

See more details on using hashes here.

File details

Details for the file tanbih_pipeline-0.6.1-py3-none-any.whl.

File metadata

  • Download URL: tanbih_pipeline-0.6.1-py3-none-any.whl
  • Upload date:
  • Size: 224.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for tanbih_pipeline-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b5c67b7b7eec8046f0b452273c0e7c85fd9b87d5e0090f10ba5087a6d946885b
MD5 05f7f35a59a4b25a8310e162531adefd
BLAKE2b-256 80794b28c52b7303969ee26d8fad3a53c37276c225b6d2a3f05246a0d7ea25e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page