Skip to main content

a pipeline framework for streaming processing

Project description

https://badge.fury.io/py/tanbih-pipeline.svg Documentation Status

a flexible stream processing framework supporting RabbitMQ, Pulsar, Kafka and Redis.

Features

  • at-least-once guaranteed with acknowledgement on every message

  • horizontally scalable through consumer groups

  • flow is controlled in deployment, develop it once, use it everywhere

  • testability provided with FILE and MEMORY input/output

Generator

Generator is to be used when developing a data source in our pipeline. A source will produce output without input. A crawler can be seen as a generator.

>>> from pipeline import Generator, Message
>>>
>>> class MyGenerator(Generator):
...     def generate(self):
...         for i in range(10):
...             yield {'id': i}
>>>
>>> generator = MyGenerator('generator', '0.1.0', description='simple generator')
>>> generator.parse_args("--kind MEM --out-topic test".split())
>>> generator.start()
>>> [r.get('id') for r in generator.destination.results]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Processor

Processor is to be used to process input. Modification will be in-place. A processor can produce one output for each input, or no output.

>>> from pipeline import Processor, Message
>>>
>>> class MyProcessor(Processor):
...     def process(self, msg):
...         msg.update({'processed': True})
...         return None
>>>
>>> processor = MyProcessor('processor', '0.1.0', description='simple processor')
>>> config = {'data': [{'id': 1}]}
>>> processor.parse_args("--kind MEM --in-topic test --out-topic test".split(), config=config)
>>> processor.start()
>>> [r.get('id') for r in processor.destination.results]
[1]

Splitter

Splitter is to be used when writing to multiple outputs. It will take a function to generate output topic based on the processing message, and use it when writing output.

>>> from pipeline import Splitter, Message
>>>
>>> class MySplitter(Splitter):
...     def get_topic(self, msg):
...         return '{}-{}'.format(self.destination.topic, msg.get('id'))
...
...     def process(self, msg):
...         msg.update({
...             'processed': True,
...         })
...         return None
>>>
>>> splitter = MySplitter('splitter', '0.1.0', description='simple splitter')
>>> config = {'data': [{'id': 1}]}
>>> splitter.parse_args("--kind MEM --in-topic test --out-topic test".split(), config=config)
>>> splitter.start()
>>> [r.get('id') for r in splitter.destinations['test-1'].results]
[1]

Usage

## Writing a Worker

Choose Generator, Processor or Splitter to subclass from.

## Environment Variables

Application accepts following environment variables:

environment command line variable argument options PIPELINE –kind KAFKA, PULSAR, FILE PULSAR –pulsar pulsar url TENANT –tenant pulsar tenant NAMESPACE –namespace pulsar namespace SUBSCRIPTION –subscription pulsar subscription KAFKA –kafka kafka url GROUPID –group-id kafka group id INTOPIC –in-topic topic to read OUTTOPIC –out-topic topic to write to

## Custom Code

Define add_arguments to add new arguments to worker.

Define setup to run initialization code before worker starts processing messages. setup is called after command line arguments have been parsed. Logic based on options (parsed arguments) goes here.

## Options

## Errors

The value None above is error you should return if dct or dcts is empty. Error will be sent to topic errors with worker information.

Credits

Yifan Zhang (yzhang at hbku.edu.qa)

Project details


Release history Release notifications | RSS feed

This version

0.7.5

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tanbih-pipeline-0.7.5.tar.gz (187.7 kB view details)

Uploaded Source

Built Distribution

tanbih_pipeline-0.7.5-py3-none-any.whl (423.4 kB view details)

Uploaded Python 3

File details

Details for the file tanbih-pipeline-0.7.5.tar.gz.

File metadata

  • Download URL: tanbih-pipeline-0.7.5.tar.gz
  • Upload date:
  • Size: 187.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.9.0

File hashes

Hashes for tanbih-pipeline-0.7.5.tar.gz
Algorithm Hash digest
SHA256 765c44777fb4da535c3dab974d21d280f11ad848e1486ecd7cf6e486503a78f7
MD5 84a69f6664d9a0b579f0bb25e52eb629
BLAKE2b-256 a3585517c13fdc4810d08f4d1b663d15a515098d5265169c62e1825cd101c2a2

See more details on using hashes here.

File details

Details for the file tanbih_pipeline-0.7.5-py3-none-any.whl.

File metadata

  • Download URL: tanbih_pipeline-0.7.5-py3-none-any.whl
  • Upload date:
  • Size: 423.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.9.0

File hashes

Hashes for tanbih_pipeline-0.7.5-py3-none-any.whl
Algorithm Hash digest
SHA256 28fa3595d4aa38d8fed90ba86f15d803f97d129b87c9aa207168b8ac1cb3f068
MD5 871aecf8706dac85f703c4c3c716c706
BLAKE2b-256 5766a88d830c02be957a7c2344b17f8a68c069b911bdb1afd59f7f389b0b37d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page