Skip to main content

NWB conversion scripts and tutorials.

Project description


NWB conversion scripts and tutorials. A collaboration with the Tank lab, funded by the Simons Foundation.


$ pip install tank-lab-to-nwb


There are two ways to go about converting Neuropixel and Virmen behavior data.

(1) The primary processing pipeline synchronizes the task data with the electrophysiology data through TTL pulse and writes the spiking output to the same NWB file.

The required arguments for the use of the relevant functions are denoted in the comments of their respective sections of the conversion script. These include the file or folder locations of the data to be converted to NWB format, as well as several optional fields such as Subject information (species/age/weight).

After editing the conversion script with the proper path for Neuropixel and behavior data, the conversion can be executed from the terminal:

$ cd tank-lab-to-nwb
$ python tank_lab_to_nwb/convert_towers_task/

Alternatively, the conversion can be done using a custom tailored jupyter notebook spikeinterface_pipeline.ipynb that can be launched from the terminal:

$ jupyter notebook notebooks/spikeinterface_pipeline.ipynb 

(2) The NWBFile can be inspected by reading it from a python script:

from pynwb import NWBHDF5IO

file_path = 'TowersTask_stub.nwb'
io = NWBHDF5IO(file_path, 'r')
nwb =

Alternatively, the NWB data can be visualized with nwb-jupyter-widgets in a jupyter notebook:

$ jupyter notebook notebooks/towers_task_custom_widget.ipynb
from pynwb import NWBHDF5IO
from nwbwidgets import nwb2widget
from tank_lab_to_nwb.nwbwidgets import custom_timeseries_widget_for_behavior
from nwbwidgets.view import default_neurodata_vis_spec
import pynwb

file_path = 'TowersTask_stub.nwb'
io = NWBHDF5IO(file_path, 'r')
nwb =

default_neurodata_vis_spec[pynwb.TimeSeries] = custom_timeseries_widget_for_behavior


Behavioral data mapping

The behavioral data is contained in .matfiles similar to the form: PoissonBlocksReboot4_cohort4_Bezos3_E65_T_20180202.mat This matlab file contains a struct (log) which contains several fields relevant for conversion. The list of fields that are extracted from this struct can be found below.


Location in Virmen (.mat) file Location in NWB file Description
log.session.start nwb.session_start_time datetime when session started
[not in file] nwb.session_description additional information about session (optional)
[name of file] nwb.session_id unique identifier of the session


Location in Virmen (.mat) file Location in NWB file Description
log.session.start nwb.subject.age age (days) in isoformat (optional)
[not in file] nwb.species information about the species (optional) nwb.subject_id identifier of the subject
[not in file] nwb.genotype information about the genotype (optional)
[not in file] information about the sex of the subject (optional)


The lab specific metadata is populated in tank_lab_to_nwb/convert_towers_task/ using the custom extension ndx-tank-metadata built for extending the NWB LabMetaData schema with the required fields:

Location in Virmen (.mat) file Location in NWB file Description
log.version.code nwb.lab_meta_data['LabMetaData'].experiment_name name of experiment run nwb.lab_meta_data['LabMetaData'].world_file_name name of world run
log.animal.protocol nwb.lab_meta_data['LabMetaData'].protocol_name name of protocol run
log.animal.stimulusBank nwb.lab_meta_data['LabMetaData'].stimulus_bank_path path of stimulus bank file
log.version.repository nwb.lab_meta_data['LabMetaData'].commit_id commit id for session run
log.session.end nwb.lab_meta_data['LabMetaData'].session_end_time datetime when session ended
log.version.rig.rig nwb.lab_meta_data['LabMetaData'].location name of rig where session was run
[not in file] nwb.lab_meta_data['LabMetaData'].num_trials number of trials in the session
[not in file] nwb.lab_meta_data['LabMetaData'].session_performance performance of correct responses in % (optional)*
log.version.rig nwb.lab_meta_data['LabMetaData'].rig.fields rig information
log.version.mazes nwb.lab_meta_data['LabMetaData'].mazes.to_dataframe() maze information
  • session_performance can be edited from


Rig information is converted from a log.version.rig struct object to a dictionary like as in this example:

{'rig': 'NPX',
 'simulationMode': 1,
 'hasDAQ': 1,
 'hasSyncComm': 0,
 'minIterationDT': 0.01,
 'arduinoPort': 'COM18',
 'sensorDotsPerRev': array([2469.2, 2469.2, 2469.2, 2469.2]),
 'ballCircumference': 63.8,
 'toroidXFormP1': 0.3879,
 'toroidXFormP2': 0.392,
 'colorAdjustment': array([0. , 0.4, 0.5]),
 'soundAdjustment': 0.2,
 'nidaqDevice': 1,
 'nidaqPort': 1,
 'nidaqLines': array([ 0, 11], dtype=int32),
 'syncClockChannel': 5,
 'syncDataChannel': 6,
 'rewardChannel': 0,
 'rewardSize': 0.004,
 'rewardDuration': 0.05,
 'laserChannel': 1,
 'rightPuffChannel': 2,
 'leftPuffChannel': 3}


Maze information is converted to a DynamicTable object that can be converted to a pandas dataframe by calling .to_dataframe() as in this example:

id world lStart lCue lMemory cueDuration cueVisibleAt cueProbability ... blockPerform
0 1 5 45 10 nan inf inf ... 0.7
1 1 30 120 20 nan inf inf ... 0.7
2 1 30 220 20 nan inf inf ... 0.7
3 1 30 300 20 nan inf inf ... 0.7
4 1 30 380 20 nan inf inf ... 0.7


Location in Virmen (.mat) file Location in NWB file Description
index of log.block structure nwb.intervals['epochs'].id number of epoch in session
log.block.mazeID nwb.intervals['epochs'].maze_id number of maze in epoch
log.block.mainMazeID nwb.intervals['epochs'].main_maze_id number of maze of "highest" level for subject
log.block.easyBlockFlag nwb.intervals['epochs'].easy_epoch 1 if block was flagged as easy (maze_id < main_maze_id)
log.block.firstTrial nwb.intervals['epochs'].first_trial first trial run in an epoch
[not in file] nwb.intervals['epochs'].num_trials number of trials for each epoch
log.block.start nwb.intervals['epochs'].start_time datetime when epoch started with respect to the start time of the session
log.block.duration nwb.intervals['epochs'].duration epoch duration in seconds
log.block.rewardMiL nwb.intervals['epochs'].reward_ml ml of reward in an epoch


Location in Virmen (.mat) file Location in NWB file Description
[not in file] nwb.intervals['trials'].id unique identifier of trial for all epochs
index of log.block.trial nwb.intervals['trials'].trial_id identifier of trial within an epoch
log.block.trial.trialType nwb.intervals['trials'].trial_type type of trial (L=Left, R=Right)
log.block.trial.choice nwb.intervals['trials'].choice (L=Left, R=Right, nil=Trial violation)
log.block.trial.start nwb.intervals['trials'].start_time start time of trial with respect to the start time of the epoch
log.block.trial.duration nwb.intervals['trials'].duration duration of trial in seconds
log.block.trial.iterations nwb.intervals['trials'].iterations number of frames in a trial
log.block.trial.iCueEntry nwb.intervals['trials'].iCueEntry iteration # when subject entered cue region
log.block.trial.iMemEntry nwb.intervals['trials'].iMemEntry iteration # when subject entered memory region
log.block.trial.iTurnEntry nwb.intervals['trials'].iTurnEntry iteration # when subject entered turn region
log.block.trial.iArmEntry nwb.intervals['trials'].iArmEntry iteration # when subject entered arm region
log.block.trial.iBlank nwb.intervals['trials'].iBlank iteration # when screen if turned off
log.block.trial.cueCombo nwb.intervals['trials'].left_cue_presence, nwb.intervals['trials'].right_cue_presence indicates if nth cue appeared on left or right
log.block.trial.cuePosition nwb.intervals['trials'].left_cue_position, nwb.intervals['trials'].right_cue_position position in maze for each cue
log.block.trial.cueOnset nwb.intervals['trials'].left_cue_onset, nwb.intervals['trials'].right_cue_onset iteration number when cues appeared in trial
log.block.trial.cueOffset nwb.intervals['trials'].left_cue_offset, nwb.intervals['trials'].right_cue_offset iteration number when cues disappeared in trial
log.block.trial.excessTravel nwb.intervals['trials'].excessTravel parameter that measures extra distance run by subject
log.block.trial.rewardScale nwb.intervals['trials'].rewardScale Multiplier of reward for each correct trial


Position, ViewAngle, Velocity, Collision

Location in Virmen (.mat) file Location in NWB file Description
log.block.trial.time nwb.processing['behavior'].data_interfaces['Time'] time vector for each frame measured by Virmen
log.block.trial.position nwb.processing['behavior'].data_interfaces['Position'].spatial_series position matrix for each frame (X(cm), Y(cm))
log.block.trial.position nwb.processing['behavior'].data_interfaces['ViewAngle'].spatial_series viewAngle for each frame (degrees)
log.block.trial.velocity nwb.processing['behavior'].data_interfaces['Velocity'] velocity matrix for each frame (X(cm/s), Y(cm/s))
log.block.trial.collision nwb.processing['behavior'].data_interfaces['Collision'] for each frame 1= collision detected

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tank_lab_to_nwb-0.2.0.tar.gz (17.6 kB view hashes)

Uploaded source

Built Distribution

tank_lab_to_nwb-0.2.0-py3-none-any.whl (16.8 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page