Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

A data exploration and visualization algorithm for understanding diffusion process.

Project description

# TaPiTaS algorithm
A data exploration and visualization algorithm for understanding diffusion process.

# Method description and citation:
## Ref.:
Chin W. C. B., Wen T. H., Sabel C. E. & Wang I. H. (2017). A geo-computational algorithm for exploring the structure of diffusion progression in time and space. Scientific Reports 7: 12565. DOI http://dx.doi.org/10.1038/s41598-017-12852-z

Paper Link:
https://www.nature.com/articles/s41598-017-12852-z

Abstract Link:
https://wcchin.github.io/a-geo-computational-algorithm-for-exploring-the-structure-of-diffusion-progression-in-time-and-space.html

====================

## dependencies
- pandas
- geopandas
- scipy
- numpy
- descartes
- matplotlib
- seaborn
- shapely


====================

## Usage
similar to the example file

**column settings**

pts_setting (about the data, should be set according to data frame):

- xcor: x coordinate column,
- ycor: y coordinate column, and
- time: the time column, integer

xcor and ycor will be used to calculate distance, so probably not longitude and latitude, should be projected according to the region

```python
pts_setting = {'xcor':'xcor', 'ycor':'ycor', 'time':'days'}
```

**main parameters**

setting the three major parameter (should be set by user):
- s_radius: spatial searching radius
- T1: the time buffer, neighboring pair relationship
- T2: the time threshold, the shifting link relationship

```python
import pandas as pd
import tapitas

adf = pd.read_csv('test_data/demo_0905.csv', index_col=0)
pts_setting = {'xcor':'xx', 'ycor':'yy', 'time':'time'}
s_radius = 500
T1 = 6
T2 = 23
PG_graph = tapitas.Point_Diffusion(adf, pts_setting=pts_setting, s_radius=s_radius, T1=T1, T2=T2, resample_time=99, confidence_level=0.8, critical_value=None)
print("calculation done")

res = PG_graph.results
print(res.get_summary_df())
print(res.get_node_df())
print(res.get_cluster_df())
print(res.get_progress_df())
print(res.get_final_slinks_df())
print(res.get_final_nlinks_df())
```


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for tapitas, version 0.0.5
Filename, size File type Python version Upload date Hashes
Filename, size tapitas-0.0.5-py3-none-any.whl (27.9 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size tapitas-0.0.5.tar.gz (21.8 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page