A library for collection of IDS & robust-IDS and tools for evaluating them
Project description
Tarda - An Intrusion Detection System Library
Tarda is a library for the collection of Intrusion Detection Systems (IDS) and robust-IDS, along with tools for evaluating them.
Installation
You can install Tarda using pip:
pip install tarda
# Import the Tarda library
from tarda import AwesomeIDS
# Create an instance of the AwesomeIDS class
model = AwesomeIDS()
# Example: Parsing data from a pcap file
model.parse("path/to/your/file.pcap", "output/file.csv", save_netstat="output/netstat.pkl")
# Example: Training the model
train_params = {
"path": "output/file.csv",
"packet_limit": 20000,
"maxAE": 10,
"FMgrace": 16000,
"ADgrace": 4000,
"model_path": "output/kitsune.pkl",
"normalize": True
}
model.train_model(train_params)
# Example: Testing the model
benign_pos, _ = model.test_model("output/file.csv", "output/kitsune.pkl", threshold=None, out_image="output/benign.png", record_scores=True)
Change Log
==========
0.0.1 (16/04/2023)
------------------
- Initialization
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
tarda-0.0.10.tar.gz
(16.0 kB
view details)
Built Distribution
tarda-0.0.10-py3-none-any.whl
(22.0 kB
view details)
File details
Details for the file tarda-0.0.10.tar.gz
.
File metadata
- Download URL: tarda-0.0.10.tar.gz
- Upload date:
- Size: 16.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | de499057178f7d04c06561a850447665d8b6b0218ebc1840baa7543b08c7f25a |
|
MD5 | 1fa4caa4be2e5a03f9ee2a7d3c436521 |
|
BLAKE2b-256 | 8f5287f4c04fad4b1251ee420f7e101c8ea46dc235a2b82eca5a7f22d6398757 |
File details
Details for the file tarda-0.0.10-py3-none-any.whl
.
File metadata
- Download URL: tarda-0.0.10-py3-none-any.whl
- Upload date:
- Size: 22.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 85fed37d3164db1c54f6b0d894eb1d42ae4a618843bde24ac6d99b8b44b1ee3d |
|
MD5 | 3678adc0928b46fab21e1dc32a1336d1 |
|
BLAKE2b-256 | f040283515dc56ffadb24994ffa923d65346cea65e68e78e2ed16cfaac1ee1f4 |