high-level IO for tar based dataset
Project description
Tarzan
Tar, as a high performance streamable format, has been widely used in the DL community (e.g. TorchData, WebDataset). TFDS-like dataset builder API provides a high-level interface for users to build their own datasets, and is also adopted by HuggingFace.
Why not connect the two? Tarzan provides a minimal high-level API to help users build their own Tar-based datasets. It also maps well between nested feature and Tar file structure to let you peek into the Tar file without extracting it.
Installation
pip install tarzan
Quick Start
- Define your dataset info, which describes the dataset structure and any metadata.
from tarzan.info import DatasetInfo
from tarzan.features import Features, Text, Scalar, Tensor, Audio
info = DatasetInfo(
description="A fake dataset",
features=Features({
'single': Text(),
'nested_list': [Scalar('int32')],
'nested_dict': {
'inner': Tensor(shape=(None, 3), dtype='float32'),
},
'complex': [{
'inner_1': Text(),
'inner_2': Audio(sample_rate=16000),
}]
}),
metadata={
'version': '1.0.0'
}
)
- Write your data to Tar files with
ShardWriter
.
from tarzan.writers import ShardWriter
with ShardWriter('data_dir', info, max_count=2) as writer:
for i in range(5):
writer.write({
'single': 'hello',
'nested_list': [1, 2, 3],
'nested_dict': {
'inner': [[1, 2, 3], [4, 5, 6]]
},
'complex': [{
'inner_1': 'world',
'inner_2': 'audio.wav'
}]
})
The structure of the data_dir
is as follows:
data_dir
├── 00000.tar
├── 00001.tar
├── 00002.tar
└── dataset_info.json
max_count
and max_size
control the maximum number of samples and the maximum size of each shard. Here we set the
max_count
to 2 to create 3 shards.
dataset_info.json
is a json file serialized from `info, which we rely on to read the data later.
cat data_dir/dataset_info.json
{
"description": "A fake dataset",
"file_list": [
"00000.tar",
"00000.tar",
"00001.tar",
"00002.tar"
],
"features": {
"single": {
"_type": "Text"
},
"nested_list": [
{
"shape": [],
"dtype": "int32",
"_type": "Scalar"
}
],
"nested_dict": {
"inner": {
"shape": [
null,
3
],
"dtype": "float32",
"_type": "Tensor"
}
},
"complex": [
{
"inner_1": {
"_type": "Text"
},
"inner_2": {
"shape": [
null
],
"dtype": "float32",
"_type": "Audio",
"sample_rate": 16000
}
}
]
},
"metadata": {
"version": "1.0.0"
}
}
You can peek the tar file without extracting it and it should map well to the nested feature structure.
tree data_dir/00000.tar
.
├── 0
│ ├── complex
│ │ └── 0
│ │ ├── inner_1
│ │ └── inner_2
│ ├── nested_dict
│ │ └── inner
│ ├── nested_list
│ │ ├── 0
│ │ ├── 1
│ │ └── 2
│ └── single
└── 1
├── complex
│ └── 0
│ ├── inner_1
│ └── inner_2
├── nested_dict
│ └── inner
├── nested_list
│ ├── 0
│ ├── 1
│ └── 2
└── single
3.Read the dataset with TarReader
from tarzan.readers import TarReader
reader = TarReader.from_dataset_info('data_dir/dataset_info.json')
for tar_name, idx, example in reader:
print(tar_name, idx, example)
data_dir/00000.tar 0 {'nested_dict': {'inner': array([[1., 2., 3.],
[4., 5., 6.]], dtype=float32)}, 'single': 'hello', 'complex': [{'inner_1': 'world', 'inner_2': <tarzan.features.audio.AudioDecoder object at 0x7fb8903443d0>}], 'nested_list': [array(1, dtype=int32), array(2, dtype=int32), array(3, dtype=int32)]}
...
Note that the Audio
feature is returned as a lazy read object AudioDecoder
to avoid unnecessary read for large audio.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tarzan-0.1.0.tar.gz
.
File metadata
- Download URL: tarzan-0.1.0.tar.gz
- Upload date:
- Size: 15.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c42467aff5d61fdfea8d0ac48067ff96d3e0e813763588775a112e493deffb69 |
|
MD5 | a438acad7e8c5940e43b98f3812110b0 |
|
BLAKE2b-256 | e3ce8bf72720140df49ed684ab9c46ba5d3fb24dd952524078ab3dadee7e704d |
File details
Details for the file tarzan-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: tarzan-0.1.0-py3-none-any.whl
- Upload date:
- Size: 19.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3b46e2def0a1dfe717068737be628a7fc991ca00478dfb6cb3192fc4268e075f |
|
MD5 | 27cbeccad72acd0ea7f2590018f02423 |
|
BLAKE2b-256 | 99d7a71cebeabed08faca09ee81e4ea7023d8ca5ffd022e5dc6a589dcfe6f287 |