A supervised learning tool for estimating task duration.
Project description
Estimator
A Python script for automatically estimating work hours in Jira using supervised learning.
Installation
Install the Python 3 package:
pip install estimator
Usage
Fill out the login credentials in your config.yaml
. A sample file to pull data from Jira would look like:
source: jira
server: https://myname.atlassian.net
username: myusername
password: mypassword
projects: MYPROJECTKEY
regressor:
cls: KernelRidge
stop_words: ''
ngram_range: [1, 6]
analyzer: char
min_df: 0.0
minimum_estimate_minutes: 15
hour_update_fields:
- Story Points
Retrieve training data:
estimator config.yaml retrieve
Generate all possible algorithm and setting combinations:
estimator config.yaml generation-combinations
Test all combinations to find which algorithm works best:
estimator config.yaml test-combinations
Fill in the regressor
settings in your config.yaml
, then train your final regressor:
estimator config.yaml train
Find the algorithm's accuracy:
estimator config.yaml test
Dryrun the application of the regressor to unestimated tickets:
estimator config.yaml apply
Save these estimates with:
estimator config.yaml apply --save
To combine the above retrieve, train and apply steps into a single command, just add --retrain
to the apply command:
estimator config.yaml apply --save --retrain
Development
Run tests locally with:
tox
To run tests for a specific environment (e.g. Python 3.7):
tox -e py37
To run a specific test:
export TESTNAME=.test_learning; tox -e py37
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file task-estimator-0.9.2.tar.gz
.
File metadata
- Download URL: task-estimator-0.9.2.tar.gz
- Upload date:
- Size: 12.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.32.2 CPython/3.5.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e204dbbc6d3af36a47b1b0443ebc85e3c0093fd9be7878e1460b0faa3a62fdaa |
|
MD5 | b805e79200a026399a42dff115491a4f |
|
BLAKE2b-256 | fb14441ac856c329ad906577ce463da3159553111a73a55847ad3f9587bac6c6 |