Skip to main content

A package for developing Task Agents

Project description

Mask-Predict

Download model

Description Dataset Model
MASK-PREDICT [WMT14 English-German] download (.tar.bz2)
MASK-PREDICT [WMT14 German-English] download (.tar.bz2)
MASK-PREDICT [WMT16 English-Romanian] download (.tar.bz2)
MASK-PREDICT [WMT16 Romanian-English] download (.tar.bz2)
MASK-PREDICT [WMT17 English-Chinese] download (.tar.bz2)
MASK-PREDICT [WMT17 Chinese-English] download (.tar.bz2)

Preprocess

text=PATH_YOUR_DATA

output_dir=PATH_YOUR_OUTPUT

src=source_language

tgt=target_language

model_path=PATH_TO_MASKPREDICT_MODEL_DIR

python preprocess.py --source-lang ${src} --target-lang ${tgt} --trainpref $text/train --validpref $text/valid --testpref $text/test --destdir ${output_dir}/data-bin --workers 60 --srcdict ${model_path}/maskPredict_${src}${tgt}/dict.${src}.txt --tgtdict ${model_path}/maskPredict${src}_${tgt}/dict.${tgt}.txt

Train

model_dir=PLACE_TO_SAVE_YOUR_MODEL

python train.py ${output_dir}/data-bin --arch bert_transformer_seq2seq --share-all-embeddings --criterion label_smoothed_length_cross_entropy --label-smoothing 0.1 --lr 5e-4 --warmup-init-lr 1e-7 --min-lr 1e-9 --lr-scheduler inverse_sqrt --warmup-updates 10000 --optimizer adam --adam-betas '(0.9, 0.999)' --adam-eps 1e-6 --task translation_self --max-tokens 8192 --weight-decay 0.01 --dropout 0.3 --encoder-layers 6 --encoder-embed-dim 512 --decoder-layers 6 --decoder-embed-dim 512 --fp16 --max-source-positions 10000 --max-target-positions 10000 --max-update 300000 --seed 0 --save-dir ${model_dir}

Evaluation

python generate_cmlm.py ${output_dir}/data-bin --path ${model_dir}/checkpoint_best_average.pt --task translation_self --remove-bpe --max-sentences 20 --decoding-iterations 10 --decoding-strategy mask_predict

License

MASK-PREDICT is CC-BY-NC 4.0. The license applies to the pre-trained models as well.

Citation

Please cite as:

@inproceedings{ghazvininejad2019MaskPredict,
  title = {Mask-Predict: Parallel Decoding of Conditional Masked Language Models},
  author = {Marjan Ghazvininejad, Omer Levy, Yinhan Liu, Luke Zettlemoyer},
  booktitle = {Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing},
  year = {2019},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

taskagents-0.1.0.tar.gz (144.5 kB view details)

Uploaded Source

Built Distribution

taskagents-0.1.0-py3-none-any.whl (211.9 kB view details)

Uploaded Python 3

File details

Details for the file taskagents-0.1.0.tar.gz.

File metadata

  • Download URL: taskagents-0.1.0.tar.gz
  • Upload date:
  • Size: 144.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for taskagents-0.1.0.tar.gz
Algorithm Hash digest
SHA256 13117090c92070049e061f3e0f6e20de3af9f1979d914e9d49a7c59c7192bfa2
MD5 5b6e05e6d7a7fe077cb2759e51a31542
BLAKE2b-256 106c6c5abb9f31b2ee3ab26212ac35fccc1c4ef9f5081cf0d755c9976b388d43

See more details on using hashes here.

File details

Details for the file taskagents-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: taskagents-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 211.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for taskagents-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f3399b262ff6c89c2572ef939cd113f56a445e9796f83a8e3af5c9a482cb4ba1
MD5 e2af660476e638a288f1486763a67b67
BLAKE2b-256 72cfbaeba1c74c5746cc28af4a4dd53bb9f5dd91e136cb43276a8ea879b8c865

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page