Skip to main content

a distributed task runner

Project description

taskkit

pypi: https://pypi.org/project/taskkit/

Overview

taskkit is a distributed task runner.

How to use

1. Implement TaskHandler

This is the core part.

import json
from typing import Any
from taskkit import TaskHandler, Task, DiscardTask


class Handler(TaskHandler):
    def handle(self, task: Task):
        # Use `tagk.group` and `task.name` to determine how to handle the task
        if task.group == '...':
            if task.name == 'foo':
                # decode the data which encoded by `self.encode_data` if needed
                data = json.loads(task.data)
                # do something with the `data`
                ...
                # return result for the task
                return ...

            elif task.name == 'bar':
                # do something
                return ...

        # you should raise DiscardTask if you want to discard the task
        raise DiscardTask

    def get_retry_interval(self,
                           task: Task,
                           exception: Exception) -> float | None:
        # This method will be called if the handle method raises exceptions. You
        # should return how long time should be wait to retry the task in seconds
        # as float. If you don't want to retry the task, you can return None to
        # make the task fail or raise DiscardTask to discard the task.
        return task.retry_count if task.retry_count < 10 else None

    def encode_data(self, group: str, task_name: str, data: Any) -> bytes:
        # encode data of tasks for serializing it
        return json.dumps(data).encode()

    def encode_result(self, task: Task, result: Any) -> bytes:
        # encode the result of the task
        return json.dumps(result).encode()

    def decode_result(self, task: Task, encoded: bytes) -> Any:
        # decode the result of the task
        return json.loads(encoded)

2. Make Kit

Use redis impl

You can use redis backend like this:

from redis.client import Redis
from taskkit.impl.redis import make_kit

REDIS_HOST = '...'
REDIS_PORT = '...'

redis = Redis(host=REDIS_HOST, port=REDIS_PORT)
kit = make_kit(redis, Handler())

Use django impl

  1. Add 'taskkit.contrib.django' to INSTALLED_APPS in the settings
  2. Run python manage.py migrate
  3. Make a kit instance like below:
from redis.client import Redis
from taskkit.impl.django import make_kit

kit = make_kit(Handler())

3. Run workers

GROUP_NAME = 'Any task group name'

# it starts busy loop
kit.start(
    # number of processes
    num_processes=3,
    # number of worker threads per process
    num_worker_threads_per_group={GROUP_NAME: 3})

# you can use `start_processes` to avoid busy loop
kit.start_processes(
    num_processes=3,
    num_worker_threads_per_group={GROUP_NAME: 3},
    daemon=True)

4. Initiate task

from datetime import timedelta
from taskkit import ResultGetTimedOut


result = kit.initiate_task(
    GROUP_NAME,
    # task name
    'your task name',
    # task data which can be encoded by `Handler.encode_data`
    dict(some_data=1),
    # run the task after 10 or more seconds.
    due=datetime.now() + timedelta(seconds=10))

try:
    value = result.get(timeout=10)
except ResultGetTimedOut:
    ...

Scheduled Tasks

from datetime import timezone, timedelta
from taskkit import ScheduleEntry, ScheduleEntryDict, RegularSchedule, ScheduleEntriesCompatMapping

# define entries
# key is a name for scheduler
# value is a list of instances of ScheduleEntry
#       or a list of dicts conforming to ScheduleEntryDict
# 
# ScheduleEntryCompat: TypeAlias = ScheduleEntry | ScheduleEntryDict
# ScheduleEntriesCompat: TypeAlias = Sequence[ScheduleEntryCompat]
# ScheduleEntriesCompatMapping: TypeAlias = Mapping[str, ScheduleEntriesCompat]
#
schedule_entries: ScheduleEntriesCompatMapping = {
    'scheduler_name': [
        # You can use ScheduleEntry instance as follows. Note that the data
        # MUST be encoded by the same algorithm as `Handler.encode_data`.
        ScheduleEntry(
            # A key which can identify the schedule in the list
            key='...',
            # group name
            group=GROUP_NAME,
            # task name
            name='test2',

            # The data MUST BE encoded by the same algorithm as
            # `Handler.encode_data` so it would looks like:
            data=Handler.encode_data(GROUP_NAME, 'test2', 'SOME DATA'),

            # It means that the scheduler will initiate the task twice
            # an hour at **:00:00 and **:30:00.
            schedule=RegularSchedule(
                seconds={0},
                minutes={0, 30},
            ),
        ),

        # You can use dict form of schedule entry (recommended).
        # Note that in dict form, the data MUST NOT be encoded because `Kit`
        # takes care of encoding for convenience. Other properties are same
        # as ScheduleEntry. Also you can use ScheduleEntryDict for annotation.
        {
            'key': '...',
            'group': GROUP_NAME,
            'name': 'test3',

            # IT MUST NOT BE ENCODED
            'data': 2,

            'schedule': RegularSchedule(seconds={0}, minutes={30}),
        }
    ],

    # You can have multiple schedulers
    'another_scheduler': [
        # other entries ...
    ],
}

# pass the entries with kit.start
kit.start(
    num_processes=3,
    num_worker_threads_per_group={GROUP_NAME: 3},

    schedule_entries=schedule_entries,
    tzinfo=timezone(timedelta(hours=9), 'JST'))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

taskkit-0.1.4.tar.gz (20.4 kB view details)

Uploaded Source

Built Distribution

taskkit-0.1.4-py3-none-any.whl (25.2 kB view details)

Uploaded Python 3

File details

Details for the file taskkit-0.1.4.tar.gz.

File metadata

  • Download URL: taskkit-0.1.4.tar.gz
  • Upload date:
  • Size: 20.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for taskkit-0.1.4.tar.gz
Algorithm Hash digest
SHA256 b674b70c7ecb8fffb6a8a70e5640cf5634d8e416297f60c88e19cacd2720151f
MD5 d7af1870513ef98be8c9c30e2fd94067
BLAKE2b-256 452586e0a64c3025d43b89f4a900756565f1182d1b7634e54ae3b3b06be54c78

See more details on using hashes here.

File details

Details for the file taskkit-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: taskkit-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 25.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for taskkit-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 886ef6d8cd8ace6f0fa2e7b9c258b8c6da70d2ff2832f61935317a66eb09ebe6
MD5 34ab8da7bf5f3637c26a1d5b03c151a6
BLAKE2b-256 019873c00166d40f428c91b584489d3b872e6f1d12cb7e512b1712a6ee40d408

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page