Skip to main content

a distributed task runner

Project description

taskkit

pypi: https://pypi.org/project/taskkit/

Overview

taskkit is a distributed task runner.

How to use

1. Implement TaskHandler

This is the core part.

import json
from typing import Any
from taskkit import TaskHandler, Task, DiscardTask


class Handler(TaskHandler):
    def handle(self, task: Task):
        # Use `tagk.group` and `task.name` to determine how to handle the task
        if task.group == '...':
            if task.name == 'foo':
                # decode the data which encoded by `self.encode_data` if needed
                data = json.loads(task.data)
                # do something with the `data`
                ...
                # return result for the task
                return ...

            elif task.name == 'bar':
                # do something
                return ...

        # you should raise DiscardTask if you want to discard the task
        raise DiscardTask

    def get_retry_interval(self,
                           task: Task,
                           exception: Exception) -> float | None:
        # This method will be called if the handle method raises exceptions. You
        # should return how long time should be wait to retry the task in seconds
        # as float. If you don't want to retry the task, you can return None to
        # make the task fail or raise DiscardTask to discard the task.
        return task.retry_count if task.retry_count < 10 else None

    def encode_data(self, group: str, task_name: str, data: Any) -> bytes:
        # encode data of tasks for serializing it
        return json.dumps(data).encode()

    def encode_result(self, task: Task, result: Any) -> bytes:
        # encode the result of the task
        return json.dumps(result).encode()

    def decode_result(self, task: Task, encoded: bytes) -> Any:
        # decode the result of the task
        return json.loads(encoded)

2. Make Kit

Use redis impl

You can use redis backend like this:

from redis.client import Redis
from taskkit.impl.redis import make_kit

REDIS_HOST = '...'
REDIS_PORT = '...'

redis = Redis(host=REDIS_HOST, port=REDIS_PORT)
kit = make_kit(redis, Handler())

Use django impl

  1. Add 'taskkit.contrib.django' to INSTALLED_APPS in the settings
  2. Run python manage.py migrate
  3. Make a kit instance like below:
from redis.client import Redis
from taskkit.impl.django import make_kit

kit = make_kit(Handler())

3. Run workers

GROUP_NAME = 'Any task group name'

# it starts busy loop
kit.start(
    # number of processes
    num_processes=3,
    # number of worker threads per process
    num_worker_threads_per_group={GROUP_NAME: 3})

# you can use `start_processes` to avoid busy loop
kit.start_processes(
    num_processes=3,
    num_worker_threads_per_group={GROUP_NAME: 3},
    daemon=True)

4. Initiate task

from datetime import timedelta
from taskkit import ResultGetTimedOut


result = kit.initiate_task(
    GROUP_NAME,
    # task name
    'your task name',
    # task data which can be encoded by `Handler.encode_data`
    dict(some_data=1),
    # run the task after 10 or more seconds.
    due=datetime.now() + timedelta(seconds=10))

try:
    value = result.get(timeout=10)
except ResultGetTimedOut:
    ...

Scheduled Tasks

from datetime import timezone, timedelta
from taskkit import ScheduleEntry, ScheduleEntryDict, RegularSchedule, ScheduleEntriesCompatMapping

# define entries
# key is a name for scheduler
# value is a list of instances of ScheduleEntry
#       or a list of dicts conforming to ScheduleEntryDict
# 
# ScheduleEntryCompat: TypeAlias = ScheduleEntry | ScheduleEntryDict
# ScheduleEntriesCompat: TypeAlias = Sequence[ScheduleEntryCompat]
# ScheduleEntriesCompatMapping: TypeAlias = Mapping[str, ScheduleEntriesCompat]
#
schedule_entries: ScheduleEntriesCompatMapping = {
    'scheduler_name': [
        # You can use ScheduleEntry instance as follows. Note that the data
        # MUST be encoded by the same algorithm as `Handler.encode_data`.
        ScheduleEntry(
            # A key which can identify the schedule in the list
            key='...',
            # group name
            group=GROUP_NAME,
            # task name
            name='test2',

            # The data MUST BE encoded by the same algorithm as
            # `Handler.encode_data` so it would looks like:
            data=Handler.encode_data(GROUP_NAME, 'test2', 'SOME DATA'),

            # It means that the scheduler will initiate the task twice
            # an hour at **:00:00 and **:30:00.
            schedule=RegularSchedule(
                seconds={0},
                minutes={0, 30},
            ),
        ),

        # You can use dict form of schedule entry (recommended).
        # Note that in dict form, the data MUST NOT be encoded because `Kit`
        # takes care of encoding for convenience. Other properties are same
        # as ScheduleEntry. Also you can use ScheduleEntryDict for annotation.
        {
            'key': '...',
            'group': GROUP_NAME,
            'name': 'test3',

            # IT MUST NOT BE ENCODED
            'data': 2,

            'schedule': RegularSchedule(seconds={0}, minutes={30}),
        }
    ],

    # You can have multiple schedulers
    'another_scheduler': [
        # other entries ...
    ],
}

# pass the entries with kit.start
kit.start(
    num_processes=3,
    num_worker_threads_per_group={GROUP_NAME: 3},

    schedule_entries=schedule_entries,
    tzinfo=timezone(timedelta(hours=9), 'JST'))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

taskkit-0.1.5.tar.gz (20.4 kB view details)

Uploaded Source

Built Distribution

taskkit-0.1.5-py3-none-any.whl (25.2 kB view details)

Uploaded Python 3

File details

Details for the file taskkit-0.1.5.tar.gz.

File metadata

  • Download URL: taskkit-0.1.5.tar.gz
  • Upload date:
  • Size: 20.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for taskkit-0.1.5.tar.gz
Algorithm Hash digest
SHA256 4751f22697d2f1b1e40b2cc79a48b2ad9d67df6350910dcd19e95101d176b237
MD5 e8a59a50b58efd383c8ee1ea4f2f839c
BLAKE2b-256 c1c683a137669835bc488ec381b311c57c688837cc213766347f79da38986e84

See more details on using hashes here.

File details

Details for the file taskkit-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: taskkit-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 25.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for taskkit-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 7caaa5ce591631f3f8aa077dbd414aafca2d05cae8ad78c1a04e85173be5fe6e
MD5 bb471428587b3bcebb99805a082e1943
BLAKE2b-256 83b69bddedd5c8503a0b25234c8a3224c9fec6b1498782c3e44f444867690112

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page