Skip to main content

Seamless integration of tasks with huggingface models

Project description

tasknet : simple multi-task transformers fine-tuning with Trainer and HuggingFace datasets.

tasknet is an interface between Huggingface datasets and Huggingface Trainer.

Task templates

tasknet relies on task templates to avoid boilerplate codes. The task templates correspond to Transformers AutoClasses:

  • SequenceClassification
  • TokenClassification
  • MultipleChoice
  • Seq2SeqLM (experimental support)

The task templates follow the same interface. They implement preprocess_function, a data collator and compute_metrics. Look at tasks.py and use existing templates as a starting point to implement a custom task template.

Task instances

Each task template has fields that should be matched with specific dataset columns. Classification has two text fields s1,s2, and a label y. Pass a dataset to a template, and fill-in the mapping between the tempalte fields and the dataset columns to instanciate a task.

import tasknet as tn
from datasets import load_dataset

rte = tn.Classification(
    dataset=load_dataset("glue", "rte"),
    s1="sentence1", s2="sentence2", y="label"
)

class args:
  model_name='roberta-base'
  learning_rate = 3e-5 
  # see https://huggingface.co/docs/transformers/v4.24.0/en/main_classes/trainer#transformers.TrainingArguments

 
tasks = [rte]
model = tn.Model(tasks, args)
trainer = tn.Trainer(model, tasks, args)
trainer.train()

Tasknet is multitask by design. It works with list of tasks and the model creates a task_models_list attribute.

Installation

pip install tasknet

Additional examples:

Colab:

https://colab.research.google.com/drive/15Xf4Bgs3itUmok7XlAK6EEquNbvjD9BD?usp=sharing

tasknet vs jiant

jiant is another library comparable to tasknet. tasknet is a minimal extension of Trainer centered on task templates, while jiant builds a custom analog of Trainer from scratch called runner. tasknet is leaner and easier to extend. jiant is config-based while tasknet is designed for interative use and scripting.

Credit

This code uses some part of the examples of the transformers library and some code from multitask-learning-transformers.

Contact

You can request features on github or reach me at damien.sileo@inria.fr

@misc{sileod22-tasknet,
  author = {Sileo, Damien},
  doi = {10.5281/zenodo.561225781},
  month = {11},
  title = {{tasknet, multitask interface between Trainer and datasets}},
  url = {https://github.com/sileod/tasknet},
  version = {1.5.0},
  year = {2022}}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tasknet-1.40.0.tar.gz (42.6 kB view details)

Uploaded Source

Built Distribution

tasknet-1.40.0-py3-none-any.whl (21.2 kB view details)

Uploaded Python 3

File details

Details for the file tasknet-1.40.0.tar.gz.

File metadata

  • Download URL: tasknet-1.40.0.tar.gz
  • Upload date:
  • Size: 42.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tasknet-1.40.0.tar.gz
Algorithm Hash digest
SHA256 dbf88436be5cecbc5f175556621b799aadb60cd417d70926177fbc0429a2fbd8
MD5 6a6d516a057365bfa7e52c2954538c3a
BLAKE2b-256 fb22b5d8144c3ad4a4ba0a29b61444d63c5f246c934d8d9e29e20c7aa7b1371b

See more details on using hashes here.

Provenance

File details

Details for the file tasknet-1.40.0-py3-none-any.whl.

File metadata

  • Download URL: tasknet-1.40.0-py3-none-any.whl
  • Upload date:
  • Size: 21.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tasknet-1.40.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8daa593f9f717b44aec6cbd0c3a6d7edfef20983fccbe7581ff1131811c028aa
MD5 5e0953b6862bdbfcce23e05c89321a35
BLAKE2b-256 fee6ad92c346a666f4cb0000b67aeb69bedebffe7e5016c1f6905743da9ee7b9

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page