Tradespace Analysis Toolkit for Constellations (TAT-C)
Project description
Tradespace Analysis Toolkit for Constellations (TAT-C)
The Tradespace Analysis Toolkit for Constellations (TAT-C) provides low-level data structures and functions for systems engineering analysis and design of Earth-observing space missions suitable for pre-Phase A concept studies.
Documentation: https://tatc.readthedocs.io
Repository: https://github.com/code-lab-org/tatc
Installation
TAT-C uses the pip build system to manage dependencies. Install the tatc library in "editable" mode:
pip install -e .
Note: the following optional dependencies are available with bracket notation:
pip install -e ".[dev]"
: for development (unit testing, coverage, and linting)pip install -e ".[docs]"
: for generating documentationpip install -e ".[examples]"
: for running optional examplespip install -e ".[osse]"
: for running optional observing system simulation experiment (OSSE) examples
Multiple optional dependencies can be installed with a comma-separated list (e.g., pip install -e ".[dev,examples]"
)
Development Tools
Development tools are applicable when working with the source code.
Unit Tests
Run unit tests with:
python -m unittest
Optionally, run a test coverage report:
coverage run -m unittest
including html output:
coverage html
Documentation
Generate documentation from the docs
directory using the command:
make html
Code Style
This project uses the black code style, applied from the project root:
black .
Contact
Paul T. Grogan paul.grogan@asu.edu
Acknowledgements
This project was supported in part by the National Aeronautics and Space Administration (NASA) Earth Science Division (ESD) Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program. Financial support is acknowledged under NASA grant numbers: NNX17AE06G, 80NSSC17K0586, 80NSSC20K1118, 80NSSC21K1515, 80NSSC22K1705, 80NSSC24K0575, 80NSSC24K0921; NASA Jet Propulsion Laboratory subcontracts: 1689594, 1686623, 1704657, 1705655; Texas A & M University subaward M2403907.
Current Project Team
- PI: Paul T. Grogan paul.grogan@asu.edu
- I. Josue Tapia-Tamayo josue.tapia@asu.edu
- Suvan Kumar skuma208@asu.edu
Project Alumni
- Isaac Feldman
- Hayden Daly
- Lindsay Portelli
- Matthew Sabatini
- Evan Abel
- Sigfried Hache
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tatc-3.2.2.tar.gz
.
File metadata
- Download URL: tatc-3.2.2.tar.gz
- Upload date:
- Size: 16.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2cea580dbda0ee7e45eb016d9124e939c292c1e50b78d1a49ee354736c238fa4 |
|
MD5 | f832a26a721ce809bd22aa2cb06e1b0f |
|
BLAKE2b-256 | 22269afead875e1466db317890575793af9216a7e6d5f69841c2a530c4328090 |
File details
Details for the file tatc-3.2.2-py3-none-any.whl
.
File metadata
- Download URL: tatc-3.2.2-py3-none-any.whl
- Upload date:
- Size: 16.0 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 424e2c4d59646405ea4b86e4e7cd036f4e6b9e1306ed65347487e2a6a69801b0 |
|
MD5 | 88cabd9fc260fc77a4b0aea5e20aa0c3 |
|
BLAKE2b-256 | 84a64bffbaaa1bf30057433ef3aca5111846f4fab580596aeec88d55449cd6e8 |