Skip to main content

Taurex Python wrapper for the FORTRAN GGChem code.

Project description

GGchem

(c) Peter Woitke & Christiane Helling 2017

Fast thermo-chemical equilibrium code with or without equilibrium condensation down to 100K.

Please cite our A&A paper "Equilibrium chemistry down to 100 K. Impact of silicates and phyllosilicates on carbon/oxygen ratio"; P. Woitke, Ch. Helling, G. H. Hunter, J. D. Millard, G. E. Turner, M. Worters, J. Blecic, J. W. Stock; 2018; Astronomy & Astrophysics 614, 1; see GGchemPaper.pdf in this folder.

We would be interested to hear from you about what kind of applications you would like to use ggchem for, please let us know via email Peter Woitke (pw31@st-and.ac.uk) as well as if you have any questions or problems.

If your research results in any publications, please cite the above article and consider to give us co-author-ship.

To checkout the git repository and compile the code, use

git clone https://github.com/pw31/GGchem
cd GGchem/src16
cp makefile.prodimo makefile
make

The makefile.prodimo is for ifort compiler, adjust your own makefile if you want to compile e.g. with gfortran.

To run the code, type

cd ..
./ggchem input/default.in

It will create the output file "Static_Conc.dat", which contains all computed molecular, atom and ion particle densities, the electron density, solid and liquid particle densities, and supersaturation ratios:

  • Tg: gas temperature [K],
  • nHtot: total hydrogen nuclei particle density [cm-3],
  • pges: total gas pressure [dyn/cm2]
  • el ... W: atomic particle densities log10(natom)[cm-3]
  • {mol}: molecular particle densities log10(nmol)[cm-3]
  • S{cond}: supersaturation ratios log10(S) [-] of condensates
  • n{cond}: concentration of condensed units per H nuclues log10(ncond/nHtot) [-]
  • eps{el}: remainig element abundances in the gas phase [-]
  • dust/gas: dust to gas mass ratio log10(rho_dust/rho_gas) [-]
  • dustVol/H: dust volume per H nucleus log10(dust_volume) [cm3]

S{cond} and n{cond} are used in the header to distinguish between supersaturation ratio and concentration of condensed units, whereas {mol} (without the leading "n") is a molecular particle density.

To visualise the results, use e.g.

python tools/Plot_T.py
evince ggchem.pdf &

Customise your own model

To create your own model, make a copy of default.in and customize it to tell GGchem what it should do. You can also look at some of the other *.in files to lean from examples. Select or deselect elements by modifying the first line, default choice is

H He C N O Na Mg Si Fe Al Ca Ti S Cl K Li F P V Cr Mn Ni Zr W el

where "el" means to include atomic and molecular ions, and the electron density as well, assuming charge equilibrium. Molecules are included if they are made of the selected elements, otherwise they will be ignored.

Choose element abundances with parameter abund_pick. The default choice is abund_pick=3 for solar abundances from Asplund et al.(2009). There are additional pre-installed options to use data from "Abundances.dat", including "EarthCrust" (abund_pick=1), "Ocean" (abund_pick=2) and "Meteorites" (abund_pick=4) as listed in "Abundances.dat". If you want any other element abundances, use (abund_pick=0) followed by a name of a custom file with abundances, see, e.g. input/model_Crich.in.

Choose sources for equilibrium constants kp(T)-data, default choice is dispol_new.dat. There are 6 different fit-formulas implemented, see details in src16/smchem16.f (function gk). Data files having kp-data are in folder data:

dispol_StockKitzmann.dat : 2008, Diplomarbeit TU Berlin
dispol_StockKitzmann_withoutTsuji.dat : same, without Tsuji refits
dispol_BarklemCollet.dat : 2016, A&A 588, A96
dispol_SharpHuebner.dat : 1990, ApJSS 72, 417
dispol_Tsuji.dat : 1973, A&A 23, 411
dispol_GGchem.dat : old NIST-Janaf fits
dispol_fast.dat : 9-molecules from Heng&Tsai 2016

You can use combinations by setting dispol_file, dispol_file2, dispol_file3, dispol_file4 in your MyModel.in file, in which case the latter have preference over the former, and will overwrite previous data.

Choose whether you want to constrain the pressure (model_pconst=.true.) or the mass density (model_pconst=.false.).

You can run single point model (model_dim=0), linear track (model_dim=1) or 2D coverage (model_dim=2). Set parameters Tmin, Tmax and then pmax, pmin or nHmax, nHmin for model_pconst=.true. or .false., respectively. In the default model_dim=1 mode, ggchem will make a linear track in (logp, logT) parameter space with Npoints points.

If you want to switch on equilibrium condensation, set model_eqcond=.true. In that mode, the code will be much slower, and also possibly unstable. Always start from large T and then lower T SLOWLY with successive calls. The code will create and expand "database.dat" automatically from the results of every successful call, such that once you have filled in the (p,T)-plane with many points, the results will be faster and more reliable. The Gibbs-free energy data files are in folder data:

DustChem_GGchem.dat : old GGchem NIST-Janaf fits
DustChem_SUPCRTBL.dat : dG-fits from the SUPCRTBL database
(Zimmer et al. 2016, Computers and Geosciences, 90, 97)
DustChem.dat : currently used collection from both

The pure gas phase chemistry needs about 0.4 ms per call for T > 1000 K (real8 version) and about 3 ms per call for T < 1000 K (real16 version). These time measurements are for 16 elements + charge. Time requirement roughly scale as N^3, if N is the number of elements. The equilibrium condensation code requires many calls of the gas-phase equilibrium chemistry routine, and takes about 0.02-0.09 sec per call, depending on how much useful information is found in database.dat.

TauREx-GGchem plugin

A Python wrapper built using the TauREx is available. The wrapper also installs all available datafiles included with GGchem

Installation

You can install one of the prebuilt binary wheels for Windows, macOS and manylinux through pip:

pip install taurex_ggchem

Installing from source

To install from source a valid C/C++ and FORTRAN compiler must be present. You can compile it by doing:

git clone https://github.com/ucl-exoplanets/GGchem.git
cd GGchem
pip install .

Running in TauREx

Once installed you can select the chemical model through the chemistry_type keyword under Chemistry.

[Chemistry]
chemistry_type = ggchem
metallicity = 1.0
selected_elements = H, He, C, N, O, Ti, V, S, K
ratio_elements = C, N, Ti
ratios_to_O = 0.5,0.001, 1e-4
equilibrium_condensation = True

[Fitting]
Ti_O_ratio:fit = True
Ti_O_ratio:prior = "LogUniform(bounds=(-6,2))"
S_O_ratio:fit = True
S_O_ratio:prior = "LogUniform(bounds=(-6,2))"
metallicity:fit = True
metallicity:prior = "LogUniform(bounds=(-6,2))"

Input arguments:

Argument Description Type Default Required
dispol_files Path to thermochemical data list of strings Built-in (BarklemCollet,StockKitzmann_withoutTsuji, WoitkeRefit )
abundance_profile Initial abundance profile. Either solar, meteor, ocean or earth string 'solar'
selected_elements List of elements to include list of string All elements in GGchem
ratio_elements List of elements to set the ratio list of string
ratios_to_O ratio of each 'ratio_element' relative to oxygen array
he_h_ratio He/H ratio float 0.083
metallicity Metallicity relative to initial abundance float 1.0
include_charge Include ions bool False
equilibrium_condensation Include condenstation bool False
dustchem_file Dust chemistry file string Built-in (DustChem.dat)
Tfast Lowest temperature (K) to use faster method float 1000
new_back_it integer 6
new_back_fac float 1e5
new_pre_method integer 2
new_full_it bool False
new_fast_level integer 1

Retrieval Parameters:

Fitting Parameter Description
metallicity Metallicity relative to solar

The wrapper will generate oxygen retrieval parameters for all metallic elements within the chemical model. If Ti is present (either by default or specifing in selected_elements) then a Ti_O_ratio retrieval parameter will be available. Using the default selected_parameters will give access to:

Fitting Parameter Description
C_O_ratio C/O ratio
N_O_ratio N/O ratio
Na_O_ratio Na/O ratio
Mg_O_ratio Mg/O ratio
Si_O_ratio Si/O ratio
Fe_O_ratio Fe/O ratio
Al_O_ratio Al/O ratio
Ca_O_ratio Ca/O ratio
Ti_O_ratio Ti/O ratio
S_O_ratio S/O ratio
Cl_O_ratio Cl/O ratio
K_O_ratio K/O ratio
Li_O_ratio Li/O ratio
F_O_ratio F/O ratio
P_O_ratio P/O ratio
V_O_ratio V/O ratio
Cr_O_ratio Cr/O ratio
Mn_O_ratio Mn/O ratio
Ni_O_ratio Ni/O ratio
Zr_O_ratio Zr/O ratio
W_O_ratio W/O ratio

Running in Python

You can import the chemistry scheme in Python pretty easily

>>> from taurex_ggchem import GGChem
>>> gg = GGChem(metallicity=1.0,  
         selected_elements=['H','He','C','O','N','K'], 
         abundance_profile='earthcrust', 
         equilibrium_condensation=True) 

You can either pass it into a TauREx forward model like so:

>>> tm = TransmissionModel(chemistry=gg)

Or use it independently to compute volume mixing ratios for gas-phase and condensates by passing in temperature and pressure ( Pascal ) arrays:

>>> nlayers = 100
>>> T = numpy.linspace(400,1000,nlayers)
>>> P = numpy.logspace(1,5, nlayers)
>>> gg.initialize_chemistry(nlayers=nlayers, temperature_profile=T, pressure_profile=P)
>>> gg.gases
['H', 'He', 'C', 'O', 'N',..., 'N3', 'O3', 'C3H']
>>> gg.mixProfile
array([[4.75989782e-04, 4.93144149e-04, 5.10561665e-04, ...,
        2.89575385e-05, 2.47386006e-05, 2.10241059e-05],
       ...,
       [2.49670621e-16, 1.44224904e-16, 8.29805526e-17, ...,
        9.48249338e-42, 4.75884162e-42, 2.37999459e-42]])
>>> gg.condensates
['C[s]', 'H2O[s]', 'H2O[l]', 'NH3[s]', 'CH4[s]', 'CO[s]', 'CO2[s]']
>>> gg.condensateMixProfile
array([[0.00000000e+00, 0.00000000e+00, 0.00000000e+00,...,
        0.00000000e+00, 0.00000000e+00],
       [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
        0.00000000e+00, 9.82922802e-10, 1.88551848e-10, 2.88471985e-11,
        4.40651877e-12, 6.95597887e-13],
        ...,
        [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
        0.00000000e+00, 0.00000000e+00]])

Bibliography

If you use the plugin please cite the relevant articles. TauREx will output it at program end. You can get the citation from Python like so:

from taurex import __citations__
print(__citations__)
print(gg.nice_citation())

Which gives:

TauREx III: A fast, dynamic and extendable framework for retrievals
Al-Refaie, Ahmed F., Changeat, Quentin, Waldmann, Ingo P., Tinetti, Giovanna
arXiv, 1912.07759, 2019

Equilibrium chemistry down to 100 K - Impact of silicates and phyllosilicates on the carbon to oxygen ratio
Woitke, P., Helling, Ch., Hunter, G. H., Millard, J. D., Turner, G. E., Worters, M., Blecic, J., Stock, J. W.
A&A, 614, A1, 2018

You can also generate bibtex from the input file like so:

taurex -i myinput.par --bibtex mybib.bib

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

taurex_ggchem-1.0.5.tar.gz (79.2 MB view details)

Uploaded Source

Built Distributions

taurex_ggchem-1.0.5-cp312-cp312-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

taurex_ggchem-1.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

taurex_ggchem-1.0.5-cp312-cp312-macosx_12_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

taurex_ggchem-1.0.5-cp312-cp312-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

taurex_ggchem-1.0.5-cp311-cp311-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

taurex_ggchem-1.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

taurex_ggchem-1.0.5-cp311-cp311-macosx_12_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

taurex_ggchem-1.0.5-cp311-cp311-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

taurex_ggchem-1.0.5-cp310-cp310-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

taurex_ggchem-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

taurex_ggchem-1.0.5-cp310-cp310-macosx_12_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

taurex_ggchem-1.0.5-cp310-cp310-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

taurex_ggchem-1.0.5-cp39-cp39-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

taurex_ggchem-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

taurex_ggchem-1.0.5-cp39-cp39-macosx_12_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

taurex_ggchem-1.0.5-cp39-cp39-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file taurex_ggchem-1.0.5.tar.gz.

File metadata

  • Download URL: taurex_ggchem-1.0.5.tar.gz
  • Upload date:
  • Size: 79.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for taurex_ggchem-1.0.5.tar.gz
Algorithm Hash digest
SHA256 cddb86f087e740a6194e001bd4fcf2fece8be59ff9970e8df877754ba8cd5590
MD5 d3632cb13bebd0d46202b6793cda9b78
BLAKE2b-256 135616caa3644725f0dc10cb32d979b7781de5efa41d2df53571d493a465fe09

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 268e952b4b099e0c9b5333211de66c8db5d6ff74cec10678e47d65c663c293db
MD5 2abe55279e296ed63536021a69144a5f
BLAKE2b-256 80ecc76074b96036683162d82a2cbcb6a1d7165888c53d7317b53dd918b38a22

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 46ad0a90c46d944c974f48f608f59fcbfa621a0fd8c2e2cb6190f706a2681505
MD5 999e418b5cbc852205dd8ae5523c7996
BLAKE2b-256 1c5d613900e88e54fdca4702d29823a96c68d761dfe174625880edcb12e24851

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 bc1329395e8d76d9720b5b47d06e8b639bc406c9b8a97bd01490808c29ebac8e
MD5 16073f7f97c7064c0e98df9d50136da3
BLAKE2b-256 8e9bd0ed10cee2da8af1b2889bfb1fb62629e55705b960993fb37c7722d8c270

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 34279d87d11591ac31e7292242334038c7225567cc3d69c4ba7e52b23fca4605
MD5 3abb2170e946daabe40c0b2f4ec1bd8f
BLAKE2b-256 df86d49b0e7f511a102533fe4a508e28450a773e76a909cc607efabae5ae80f1

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c4e70047ff3cb315ec14022c8eda22ebede9d0ad36a85e9299857936d2daa2f7
MD5 c388a7a034c0d60af826595db4935c72
BLAKE2b-256 459c6f9ecf1ec3f2c3840ff0ab9ae6e7d7908a0d9fb67bebabc0bf033fc9b8b5

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47840c3488dafe8352d6481efd9cdcadec84925dd011bbc8357c389ef8a1d470
MD5 be2c06e30ea731891533e36e278bd3da
BLAKE2b-256 ce5909b73fe30c33961f4955f554583304ad1ed36cf576561c867673dce3e0b2

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 68a8050c021bd96b5385086b2fd66aa9290aa09f41bcaaa7fed6d2ade8cd548a
MD5 f462834181dfad5a52e1a2b7f9424426
BLAKE2b-256 0da6f305a8dc73cd332b41b5e4b125e2824dba900163e49906cb2311873430a6

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e2f98c69d3f15a1aed326c6df1c69235826a934a9aa023f2603cd1b1eb9ee786
MD5 b89badffbb2a75e516055215d184e868
BLAKE2b-256 d0ce4650ce2f1d5a08c57e3d58cfb49001797fa827c9295fc1831177399dfe0b

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c52b41cb77556c3545b6b46c0437deaf04199ddb61b1f9ba67cea5e9e07eb920
MD5 01d7f7ed100bce8e6afb4691a7db638b
BLAKE2b-256 e9802cd8e8cda4e32fabfa4dc60b80a3b9397612db134527e3e2f16ba2aa5bc3

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2f9cff9efeafa7a9591aa7ab2531c76b4556adb01fb647b93e82f68f3e15736
MD5 cd61faf0354b3fff7e817bfe3ea846fa
BLAKE2b-256 9db334d8d2d680678b9de7e5062391e672c4c8752dc05034d1e26d419f2d574b

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 76feae3fd83148e6520dc129d64e0a3d9567bc0c48745c650581aa595af6d8c6
MD5 6587984a959861746b61f309ef82b402
BLAKE2b-256 c56b6e49ad2dbcc33020b19d65cfe6f3dbd533d297798b00a5df7478000e524c

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e01ae3555c7e0f9afb407288d6b905d31be0070108f8882bc503adfd88dfb513
MD5 cd687e2c1eade28795e14e73e7bf15f4
BLAKE2b-256 c87ad00bf47751e3ccc88fb9b10fdb334af1075b41b89d86dd10e0c637a8137e

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 82fc88734a955e8d08e118bf470500d10cad3dff226eff9361080e6938e22a9d
MD5 33d0288d580f11c0e2e074e58355619b
BLAKE2b-256 19035c5f7d42ce9f88bb2259f5ac523e59ad8fe9f3a2ee61211c146457f2d66c

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4b1489909c44de56257c0b08fd42128d082650fcbc448120fab900bfcad24be
MD5 c40ad06c5831d7a10f93176c42cab851
BLAKE2b-256 69a3a7f4f36252e7def00ba54340b350f6a50a9465b0f9e49d7a74d29c5e9694

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 d0940ee98e52c30693a1f6529fe359e6566f72df409e228a4745c2329d22dc93
MD5 7f8cccfdc25f1bb1b39d04ef9b626882
BLAKE2b-256 00f48ff35230d1cf597f86389177ad59be2ac81ee9bb3cab876cec0aeeaff55e

See more details on using hashes here.

File details

Details for the file taurex_ggchem-1.0.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 48b76cfbbd252f77076534f2111e4b57b79e6ad037e044349a572f941d3376c3
MD5 d387471ab60d1cd5b40f187ab4b12235
BLAKE2b-256 a8e91ffa91f8dbbea79d362e972fd0a7dd0ce8fc1ed5a5e1b5abd2affbcc1667

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page