Skip to main content

Taurex Python wrapper for the FORTRAN GGChem code.

Project description

GGchem

(c) Peter Woitke & Christiane Helling 2017

Fast thermo-chemical equilibrium code with or without equilibrium condensation down to 100K.

Please cite our A&A paper "Equilibrium chemistry down to 100 K. Impact of silicates and phyllosilicates on carbon/oxygen ratio"; P. Woitke, Ch. Helling, G. H. Hunter, J. D. Millard, G. E. Turner, M. Worters, J. Blecic, J. W. Stock; 2018; Astronomy & Astrophysics 614, 1; see GGchemPaper.pdf in this folder.

We would be interested to hear from you about what kind of applications you would like to use ggchem for, please let us know via email Peter Woitke (pw31@st-and.ac.uk) as well as if you have any questions or problems.

If your research results in any publications, please cite the above article and consider to give us co-author-ship.

To checkout the git repository and compile the code, use

git clone https://github.com/pw31/GGchem
cd GGchem/src16
cp makefile.prodimo makefile
make

The makefile.prodimo is for ifort compiler, adjust your own makefile if you want to compile e.g. with gfortran.

To run the code, type

cd ..
./ggchem input/default.in

It will create the output file "Static_Conc.dat", which contains all computed molecular, atom and ion particle densities, the electron density, solid and liquid particle densities, and supersaturation ratios:

  • Tg: gas temperature [K],
  • nHtot: total hydrogen nuclei particle density [cm-3],
  • pges: total gas pressure [dyn/cm2]
  • el ... W: atomic particle densities log10(natom)[cm-3]
  • {mol}: molecular particle densities log10(nmol)[cm-3]
  • S{cond}: supersaturation ratios log10(S) [-] of condensates
  • n{cond}: concentration of condensed units per H nuclues log10(ncond/nHtot) [-]
  • eps{el}: remainig element abundances in the gas phase [-]
  • dust/gas: dust to gas mass ratio log10(rho_dust/rho_gas) [-]
  • dustVol/H: dust volume per H nucleus log10(dust_volume) [cm3]

S{cond} and n{cond} are used in the header to distinguish between supersaturation ratio and concentration of condensed units, whereas {mol} (without the leading "n") is a molecular particle density.

To visualise the results, use e.g.

python tools/Plot_T.py
evince ggchem.pdf &

Customise your own model

To create your own model, make a copy of default.in and customize it to tell GGchem what it should do. You can also look at some of the other *.in files to lean from examples. Select or deselect elements by modifying the first line, default choice is

H He C N O Na Mg Si Fe Al Ca Ti S Cl K Li F P V Cr Mn Ni Zr W el

where "el" means to include atomic and molecular ions, and the electron density as well, assuming charge equilibrium. Molecules are included if they are made of the selected elements, otherwise they will be ignored.

Choose element abundances with parameter abund_pick. The default choice is abund_pick=3 for solar abundances from Asplund et al.(2009). There are additional pre-installed options to use data from "Abundances.dat", including "EarthCrust" (abund_pick=1), "Ocean" (abund_pick=2) and "Meteorites" (abund_pick=4) as listed in "Abundances.dat". If you want any other element abundances, use (abund_pick=0) followed by a name of a custom file with abundances, see, e.g. input/model_Crich.in.

Choose sources for equilibrium constants kp(T)-data, default choice is dispol_new.dat. There are 6 different fit-formulas implemented, see details in src16/smchem16.f (function gk). Data files having kp-data are in folder data:

dispol_StockKitzmann.dat : 2008, Diplomarbeit TU Berlin
dispol_StockKitzmann_withoutTsuji.dat : same, without Tsuji refits
dispol_BarklemCollet.dat : 2016, A&A 588, A96
dispol_SharpHuebner.dat : 1990, ApJSS 72, 417
dispol_Tsuji.dat : 1973, A&A 23, 411
dispol_GGchem.dat : old NIST-Janaf fits
dispol_fast.dat : 9-molecules from Heng&Tsai 2016

You can use combinations by setting dispol_file, dispol_file2, dispol_file3, dispol_file4 in your MyModel.in file, in which case the latter have preference over the former, and will overwrite previous data.

Choose whether you want to constrain the pressure (model_pconst=.true.) or the mass density (model_pconst=.false.).

You can run single point model (model_dim=0), linear track (model_dim=1) or 2D coverage (model_dim=2). Set parameters Tmin, Tmax and then pmax, pmin or nHmax, nHmin for model_pconst=.true. or .false., respectively. In the default model_dim=1 mode, ggchem will make a linear track in (logp, logT) parameter space with Npoints points.

If you want to switch on equilibrium condensation, set model_eqcond=.true. In that mode, the code will be much slower, and also possibly unstable. Always start from large T and then lower T SLOWLY with successive calls. The code will create and expand "database.dat" automatically from the results of every successful call, such that once you have filled in the (p,T)-plane with many points, the results will be faster and more reliable. The Gibbs-free energy data files are in folder data:

DustChem_GGchem.dat : old GGchem NIST-Janaf fits
DustChem_SUPCRTBL.dat : dG-fits from the SUPCRTBL database
(Zimmer et al. 2016, Computers and Geosciences, 90, 97)
DustChem.dat : currently used collection from both

The pure gas phase chemistry needs about 0.4 ms per call for T > 1000 K (real8 version) and about 3 ms per call for T < 1000 K (real16 version). These time measurements are for 16 elements + charge. Time requirement roughly scale as N^3, if N is the number of elements. The equilibrium condensation code requires many calls of the gas-phase equilibrium chemistry routine, and takes about 0.02-0.09 sec per call, depending on how much useful information is found in database.dat.

TauREx-GGchem plugin

A Python wrapper built using the TauREx is available. The wrapper also installs all available datafiles included with GGchem

Installation

You can install one of the prebuilt binary wheels for Windows, macOS and manylinux through pip:

pip install taurex_ggchem

Installing from source

To install from source a valid C/C++ and FORTRAN compiler must be present. You can compile it by doing:

git clone https://github.com/ucl-exoplanets/GGchem.git
cd GGchem
pip install .

Running in TauREx

Once installed you can select the chemical model through the chemistry_type keyword under Chemistry.

[Chemistry]
chemistry_type = ggchem
metallicity = 1.0
selected_elements = H, He, C, N, O, Ti, V, S, K
ratio_elements = C, N, Ti
ratios_to_O = 0.5,0.001, 1e-4
equilibrium_condensation = True

[Fitting]
Ti_O_ratio:fit = True
Ti_O_ratio:prior = "LogUniform(bounds=(-6,2))"
S_O_ratio:fit = True
S_O_ratio:prior = "LogUniform(bounds=(-6,2))"
metallicity:fit = True
metallicity:prior = "LogUniform(bounds=(-6,2))"

Input arguments:

Argument Description Type Default Required
dispol_files Path to thermochemical data list of strings Built-in (BarklemCollet,StockKitzmann_withoutTsuji, WoitkeRefit )
abundance_profile Initial abundance profile. Either solar, meteor, ocean or earth string 'solar'
selected_elements List of elements to include list of string All elements in GGchem
ratio_elements List of elements to set the ratio list of string
ratios_to_O ratio of each 'ratio_element' relative to oxygen array
he_h_ratio He/H ratio float 0.083
metallicity Metallicity relative to initial abundance float 1.0
include_charge Include ions bool False
equilibrium_condensation Include condenstation bool False
dustchem_file Dust chemistry file string Built-in (DustChem.dat)
Tfast Lowest temperature (K) to use faster method float 1000
new_back_it integer 6
new_back_fac float 1e5
new_pre_method integer 2
new_full_it bool False
new_fast_level integer 1

Retrieval Parameters:

Fitting Parameter Description
metallicity Metallicity relative to solar

The wrapper will generate oxygen retrieval parameters for all metallic elements within the chemical model. If Ti is present (either by default or specifing in selected_elements) then a Ti_O_ratio retrieval parameter will be available. Using the default selected_parameters will give access to:

Fitting Parameter Description
C_O_ratio C/O ratio
N_O_ratio N/O ratio
Na_O_ratio Na/O ratio
Mg_O_ratio Mg/O ratio
Si_O_ratio Si/O ratio
Fe_O_ratio Fe/O ratio
Al_O_ratio Al/O ratio
Ca_O_ratio Ca/O ratio
Ti_O_ratio Ti/O ratio
S_O_ratio S/O ratio
Cl_O_ratio Cl/O ratio
K_O_ratio K/O ratio
Li_O_ratio Li/O ratio
F_O_ratio F/O ratio
P_O_ratio P/O ratio
V_O_ratio V/O ratio
Cr_O_ratio Cr/O ratio
Mn_O_ratio Mn/O ratio
Ni_O_ratio Ni/O ratio
Zr_O_ratio Zr/O ratio
W_O_ratio W/O ratio

Running in Python

You can import the chemistry scheme in Python pretty easily

>>> from taurex_ggchem import GGChem
>>> gg = GGChem(metallicity=1.0,  
         selected_elements=['H','He','C','O','N','K'], 
         abundance_profile='earthcrust', 
         equilibrium_condensation=True) 

You can either pass it into a TauREx forward model like so:

>>> tm = TransmissionModel(chemistry=gg)

Or use it independently to compute volume mixing ratios for gas-phase and condensates by passing in temperature and pressure ( Pascal ) arrays:

>>> nlayers = 100
>>> T = numpy.linspace(400,1000,nlayers)
>>> P = numpy.logspace(1,5, nlayers)
>>> gg.initialize_chemistry(nlayers=nlayers, temperature_profile=T, pressure_profile=P)
>>> gg.gases
['H', 'He', 'C', 'O', 'N',..., 'N3', 'O3', 'C3H']
>>> gg.mixProfile
array([[4.75989782e-04, 4.93144149e-04, 5.10561665e-04, ...,
        2.89575385e-05, 2.47386006e-05, 2.10241059e-05],
       ...,
       [2.49670621e-16, 1.44224904e-16, 8.29805526e-17, ...,
        9.48249338e-42, 4.75884162e-42, 2.37999459e-42]])
>>> gg.condensates
['C[s]', 'H2O[s]', 'H2O[l]', 'NH3[s]', 'CH4[s]', 'CO[s]', 'CO2[s]']
>>> gg.condensateMixProfile
array([[0.00000000e+00, 0.00000000e+00, 0.00000000e+00,...,
        0.00000000e+00, 0.00000000e+00],
       [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
        0.00000000e+00, 9.82922802e-10, 1.88551848e-10, 2.88471985e-11,
        4.40651877e-12, 6.95597887e-13],
        ...,
        [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
        0.00000000e+00, 0.00000000e+00]])

Bibliography

If you use the plugin please cite the relevant articles. TauREx will output it at program end. You can get the citation from Python like so:

from taurex import __citations__
print(__citations__)
print(gg.nice_citation())

Which gives:

TauREx III: A fast, dynamic and extendable framework for retrievals
Al-Refaie, Ahmed F., Changeat, Quentin, Waldmann, Ingo P., Tinetti, Giovanna
arXiv, 1912.07759, 2019

Equilibrium chemistry down to 100 K - Impact of silicates and phyllosilicates on the carbon to oxygen ratio
Woitke, P., Helling, Ch., Hunter, G. H., Millard, J. D., Turner, G. E., Worters, M., Blecic, J., Stock, J. W.
A&A, 614, A1, 2018

You can also generate bibtex from the input file like so:

taurex -i myinput.par --bibtex mybib.bib

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

taurex_ggchem-1.0.4.tar.gz (79.2 MB view details)

Uploaded Source

Built Distributions

taurex_ggchem-1.0.4-cp312-cp312-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

taurex_ggchem-1.0.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

taurex_ggchem-1.0.4-cp312-cp312-macosx_12_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

taurex_ggchem-1.0.4-cp312-cp312-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

taurex_ggchem-1.0.4-cp311-cp311-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

taurex_ggchem-1.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

taurex_ggchem-1.0.4-cp311-cp311-macosx_12_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

taurex_ggchem-1.0.4-cp311-cp311-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

taurex_ggchem-1.0.4-cp310-cp310-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

taurex_ggchem-1.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

taurex_ggchem-1.0.4-cp310-cp310-macosx_12_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

taurex_ggchem-1.0.4-cp310-cp310-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

taurex_ggchem-1.0.4-cp39-cp39-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

taurex_ggchem-1.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

taurex_ggchem-1.0.4-cp39-cp39-macosx_12_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

taurex_ggchem-1.0.4-cp39-cp39-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file taurex_ggchem-1.0.4.tar.gz.

File metadata

  • Download URL: taurex_ggchem-1.0.4.tar.gz
  • Upload date:
  • Size: 79.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for taurex_ggchem-1.0.4.tar.gz
Algorithm Hash digest
SHA256 fb7bf8d8586905101e919f6abe5fcbafd52a947097ea973c14d6d03e88ce663a
MD5 ba0a7cf2941560288cd8d6b14b74ee2e
BLAKE2b-256 b72479b3e49a31ccf0d2e484b4c345eb043ed8204f26d4284a411f5d7fb4b13f

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d8fb941da31761f20958eded2dba677fa980370799f127d90dc1f7afb7f46ef3
MD5 b1aeb69cc403f01b3a3cabbda67b48a1
BLAKE2b-256 be5072d4a9a2b0d8700623b5b55a8b87be33f3a76127cc85f74c2b7e781309c7

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad8a02b419483e43dfe7338ca9b4d845614641aee4f7bc4806b1402a45dd64c2
MD5 634e9dc491d9eec501ce07657fb04a5a
BLAKE2b-256 c7ffbe129af0a528a7b21153ee66b4c3a8733005796052cdca6945cc09d35621

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8e8f2826dd0e9379e7fb848ce90d96c461a20caf79eed32b0cf7b5066ef20c3e
MD5 163922e2426c93f87269d64ad7f0ef2f
BLAKE2b-256 38b66579d307bbe19a466f979262fbe13a479a139a8511042dcd896febf93ace

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2bf768f3741f94ebc6dc2a3f132936f216a66f7562efe9cc8dcb3a57201cba39
MD5 05f4e84b4a441d479adcc9b36919b29c
BLAKE2b-256 eceb71315b5707a29c471c43b7a79a5048008e68ba1d066da9d4d174c500c254

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4ac89b2c06e00038921e07c04df1064ed1bb5e303a04d974e9cc8546a7f9450f
MD5 5767668656a5392f7da50ed247c31f0e
BLAKE2b-256 a89a5d03e8dafa16e567e7ceda12e25c3bbe7a299a9b1cd24e642e6762817cb5

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18b6df1be54ea57279a0f5ae26f5773b50f59ee1e3b1aa2e997f5fdc63b271e6
MD5 9890a85cec3a978609b90bf20ff9fa46
BLAKE2b-256 cbee124671a6b1bbe223f457eb34ef29594dff82ee5be4c9d9fc494ea8100a63

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a460731aa8796bef6664706c1b97720794f2e31c3d362257b24c33f30686eb57
MD5 2cc5d27ee845c64e06c5cbc514719297
BLAKE2b-256 bb6aad5978ba28dcc6599d136d339d2be35a107d1e380a2162194e617cc5a80a

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1eace81c7823fdd0eaad4cdfc044ea075133df5a8dcc2eadea70be92e05ab371
MD5 b37dafa987889e7318e84600d799242d
BLAKE2b-256 5cd02301fe38e9ba42a896f2ff188f89441173d62761c9a75dbb19e7cfc0da76

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4b86db624338568d224334957432f981d3f40b93c9e668e0603e5a2fba93228a
MD5 a1a8838248268de073a197c736487ceb
BLAKE2b-256 1fec7455ba29fe04c866d1f26f7e57df3fa0fc3a97f3b9c54493be6eeee50b25

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8621e7f6e354f55a4f74a9074b3de09878c12adbada3d6a27ae5799d9d64f60f
MD5 36dbe82151473c0f5e0000d348046267
BLAKE2b-256 d3b34e3c53458d7c9c82a23ed3aebfe1db1cc91c9793d2564e9dc43eb3dcc85c

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 44ca610bd6faa5082ac7f6ebd64fa1d8a0313bcdf9c99409f08aa4809bc0b767
MD5 07c3afdfa783b7fc490de1150f5a2817
BLAKE2b-256 6afb223391459afa4adb2436092398331034d3d76a28631cdf30b430ff9ef483

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a25c88d12e2aa8da9bcaa435db6f8126e6cba178b4961ff0441dc553f428dd56
MD5 5e8dd924fe38828bf85101fc5b1d98e6
BLAKE2b-256 cb600ecc032384c7f9ba68af60c76029895f44bf2cf2c47b93bab8e12744b541

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b8def8b73f8a0363fc5b1af72228e556f71f134e8db0231be4d971c3bd49755c
MD5 00844093694af6801460ec7766d2cde4
BLAKE2b-256 d36bc4038c77258d44ce3bb017bc424ec29072687faa57aa686b6785d20f4381

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b9f1c2ba61da23e466b40e67cbb480eaec1ef2b2e250c47cc0cd8ea40ece7a1
MD5 bd03deeabcdf14f9249a400f45d7ce1d
BLAKE2b-256 144b31640088f9e96b955e20d372b23e56bcb57744e84443a030efc91f19a3f1

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 7541bca8c3e736dc4019fd2cb36cde436a1c997068df97f9298ba7e2d1af6d6a
MD5 67b0869926e84b6b71924ddf6c5dd0fc
BLAKE2b-256 032c948f508520db49b5f026d2db27b981836f6bbffe123cb6c156d9d34bdc39

See more details on using hashes here.

Provenance

File details

Details for the file taurex_ggchem-1.0.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for taurex_ggchem-1.0.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9fdb92a568853e43f6e3e138ba4e09979f104338c6fae5012f7326b89252a836
MD5 4a48e9e3dbeb7ffd864ab71d98e70fcf
BLAKE2b-256 155ccdcb5cc81ca7c8d47437d705e3bd9e1b058cfa03df3edb3a440829fe8052

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page