Skip to main content

A Python package for obtaining complete lineages and the lowest common ancestor (LCA) from a set of taxonomic identifiers.

Project description

taxopy

A Python package for manipulating NCBI-formatted taxonomic databases. Allows you to obtain complete lineages, determine lowest common ancestors (LCAs), get taxa names from their taxids, and more!

Installation

There are two ways to install taxopy:

  • Using pip:
pip install taxopy
  • Using conda:
conda install -c conda-forge -c bioconda taxopy

Usage

import taxopy

First you need to download taxonomic information from NCBI's servers and put this data into a TaxDb object:

taxdb = taxopy.TaxDb()
# You can also use your own set of taxonomy files:
taxdb = taxopy.TaxDb(nodes_dmp="taxdb/nodes.dmp", names_dmp="taxdb/names.dmp")
# If you want to support legacy taxonomic identifiers (that were merged to other identifier), you also need to provide a `merged.dmp` file. This is not necessary if the data is being downloaded from NCBI.
taxdb = taxopy.TaxDb(nodes_dmp="taxdb/nodes.dmp", names_dmp="taxdb/names.dmp", merged_dmp="taxdb/merged.dmp", keep_files=True)

The TaxDb object stores the name, rank and parent-child relationships of each taxonomic identifier:

print(taxdb.taxid2name[2])
print(taxdb.taxid2parent[2])
print(taxdb.taxid2rank[2])
Bacteria
131567
superkingdom

If you want to retrieve the new taxonomic identifier of a legacy identifier you can use the `` attribute:

print(taxdb.oldtaxid2newtaxid[260])
143224

To get information of a given taxon you can create a Taxon object using its taxonomic identifier:

saccharomyces = taxopy.Taxon(4930, taxdb)
human = taxopy.Taxon(9606, taxdb)
gorilla = taxopy.Taxon(9593, taxdb)
lagomorpha = taxopy.Taxon(9975, taxdb)

Each Taxon object stores a variety of information, such as the rank, identifier and name of the input taxon, and the identifiers and names of all the parent taxa:

print(lagomorpha.rank)
print(lagomorpha.name)
print(lagomorpha.name_lineage)
print(lagomorpha.rank_name_dictionary)
order
Lagomorpha
['Lagomorpha', 'Glires', 'Euarchontoglires', 'Boreoeutheria', 'Eutheria', 'Theria', 'Mammalia', 'Amniota', 'Tetrapoda', 'Dipnotetrapodomorpha', 'Sarcopterygii', 'Euteleostomi', 'Teleostomi', 'Gnathostomata', 'Vertebrata', 'Craniata', 'Chordata', 'Deuterostomia', 'Bilateria', 'Eumetazoa', 'Metazoa', 'Opisthokonta', 'Eukaryota', 'cellular organisms', 'root']
{'order': 'Lagomorpha', 'clade': 'Opisthokonta', 'superorder': 'Euarchontoglires', 'class': 'Mammalia', 'superclass': 'Sarcopterygii', 'subphylum': 'Craniata', 'phylum': 'Chordata', 'kingdom': 'Metazoa', 'superkingdom': 'Eukaryota'}

LCA and majority vote

You can get the lowest common ancestor of a list of taxa using the find_lca function:

human_lagomorpha_lca = taxopy.find_lca([human, lagomorpha], taxdb)
print(human_lagomorpha_lca.name)
Euarchontoglires

You may also use the find_majority_vote to discover the most specific taxon that is shared by more than half of the lineages of a list of taxa:

majority_vote = taxopy.find_majority_vote([human, gorilla, lagomorpha], taxdb)
print(majority_vote.name)
Homininae

The find_majority_vote function allows you to control its stringency via the fraction parameter. For instance, if you would set fraction to 0.75 the resulting taxon would be shared by more than 75% of the input lineages. By default, fraction is 0.5.

majority_vote = taxopy.find_majority_vote([human, gorilla, lagomorpha], taxdb, fraction=0.75)
print(majority_vote.name)
Euarchontoglires

You can also assign weights to each input lineage:

majority_vote = taxopy.find_majority_vote([saccharomyces, human, gorilla, lagomorpha], taxdb)
weighted_majority_vote = taxopy.find_majority_vote([saccharomyces, human, gorilla, lagomorpha], taxdb, weights=[3, 1, 1, 1])
print(majority_vote.name)
print(weighted_majority_vote.name)
Euarchontoglires
Opisthokonta

To check the level of agreement between the taxa that were aggregated using find_majority_vote and the output taxon, you can check the agreement attribute.

print(majority_vote.agreement)
print(weighted_majority_vote.agreement)
0.75
1.0

Taxid from name

If you only have the name of a taxon, you can get its corresponding taxid using the taxid_from_name function:

taxid = taxopy.taxid_from_name('Homininae', taxdb)
print(taxid)
[207598]

This function returns a list of all taxonomic identifiers associated with the input name. In the case of homonyms, the list will contain multiple taxonomic identifiers:

taxid = taxopy.taxid_from_name('Aotus', taxdb)
print(taxid)
[9504, 114498]

Acknowledgements

Some of the code used in taxopy was taken from the CAT/BAT tool for taxonomic classification of contigs and metagenome-assembled genomes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

taxopy-0.9.0.tar.gz (21.4 kB view details)

Uploaded Source

Built Distribution

taxopy-0.9.0-py3-none-any.whl (22.0 kB view details)

Uploaded Python 3

File details

Details for the file taxopy-0.9.0.tar.gz.

File metadata

  • Download URL: taxopy-0.9.0.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.2

File hashes

Hashes for taxopy-0.9.0.tar.gz
Algorithm Hash digest
SHA256 95c78e1dad5242c79705586a770014a0bf60b4d4deeaa00b88ec42837fc4f693
MD5 7ceada2c3051f332bda6cd9d57a91cfd
BLAKE2b-256 0fae2753280c17f34aecbf5181990c3cdf593ef073051925b1a0b31db087eb89

See more details on using hashes here.

File details

Details for the file taxopy-0.9.0-py3-none-any.whl.

File metadata

  • Download URL: taxopy-0.9.0-py3-none-any.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.2

File hashes

Hashes for taxopy-0.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6045a0a5172a1fe5d25e980fb6571460b9fbf0e99585ccd9725cddfc7a24ad52
MD5 505c13f6aaf10016299c237470165be9
BLAKE2b-256 290600c86d05cb5b179af6b44e8ce3da6a3b96a9a8ae8788b95eed8a9039db47

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page