Skip to main content

Semantic similarity computation with different state-of-the-art metrics

Project description

Semantic similarity computation with different state-of-the-art metrics

DescriptionInstallationUsageLicense


Description

TaxoSS is a semantic similarity library for Python which implements the state-of-the-art semantic similarity metrics like Resnik, JCN, and HSS.

Requirements

  • Python 3.6 or later
  • NLTK
  • NumPy
  • Pandas

Installation

TaxoSS can be installed through pip (the Python package manager) in the following way:

pip install taxoss

Usage

Semantic similarity functions

You can compute the semantic similarity in the following way:

from TaxoSS.functions import semantic_similarity
semantic_similarity('brother', 'sister', 'hss')

3.353513521371089

The function semantic_similarity(word1, word2, kind, ic) has these options for the argument kind:

  • hss -> HSS (default)
  • wup -> WUP
  • lcs -> LC
  • path_sim -> Shortest Path
  • resnik -> Resnik
  • jcn -> Jiang-Conrath
  • lin -> Lin
  • seco -> Seco

For the argument ic see the following section.

Information Content

Using a Wikipedia copus for calculating the Information Content (default of the argument ic):

from TaxoSS.functions import semantic_similarity
semantic_similarity('cat', 'dog', 'resnik')

6.169410755220327

Calculating Information Conent from a given corpus:

from TaxoSS.calculate_IC import calculate_IC
from TaxoSS.functions import semantic_similarity

calculate_IC(path_to_corpus, path_to_save_IC_file)
semantic_similarity('cat', 'dog', 'resnik', path_to_save_IC_file)

with path_to_save_IC_file a path into the virtual environment TaxoSS package, e.g. venv/lib/python3.6/site-packages/TaxoSS/data/prova_IC.csv.

Benchmark

HSS (ours) HSS (ours) WUP WUP LC LC Shortest Path Shortest Path Resnik Resnik Jiang-Conrath Jiang-Conrath Lin Lin Seco Seco
Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman
MEN 0.41 0.33 0.36 0.33 0.14 0.05 0.07 0.03 0.05 0.03 -0.05 -0.04 0.05 0.04 -0.01 0.03
MC30 0.74 0.69 0.74 0.73 0.33 0.21 0.22 0.3 0.13 0.03 -0.06 -0.01 0.05 0.01 0.13 -0.09
WSS 0.68 0.65 0.58 0.59 0.36 0.23 0.16 0.1 0.02 -0.03 0.04 0.06 0.03 0.06 -0.01 -0.04
Simlex999 0.4 0.38 0.45 0.43 0.26 0.15 0.2 0.16 -0.04 -0.04 0.12 0.14 0.12 0.14 -0.02 -0.08
MT287 0.46 0.31 0.4 0.28 0.26 0.12 0.11 0.11 0.03 0.04 0.18 0.16 0.22 0.17 0 -0.06
MT771 0.44 0.4 0.43 0.49 0.06 0.02 0.1 0.13 0 -0.01 0 0 0 0 -0.05 -0.03
Time per pair (s) 0.0007 0.0007 0.008 0.008 0.0055 0.0055 0.0064 0.0064 0.5586 0.5586 0.551 0.551 0.5866 0.5866 0.0013 0.0013

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

TaxoSS-0.1.5.tar.gz (31.8 MB view details)

Uploaded Source

Built Distribution

TaxoSS-0.1.5-py2-none-any.whl (32.3 MB view details)

Uploaded Python 2

File details

Details for the file TaxoSS-0.1.5.tar.gz.

File metadata

  • Download URL: TaxoSS-0.1.5.tar.gz
  • Upload date:
  • Size: 31.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.3

File hashes

Hashes for TaxoSS-0.1.5.tar.gz
Algorithm Hash digest
SHA256 67f78de326eaae1b9a5a0e1f50eb915e93600da90af7e8ba6b9f082faf9a19ff
MD5 924c9d971b8aec10cececf8574d75acb
BLAKE2b-256 0cfdc722daeb3550d5a192c0be297d3f090fe7b5c01eaf2dce23403af794d89d

See more details on using hashes here.

File details

Details for the file TaxoSS-0.1.5-py2-none-any.whl.

File metadata

  • Download URL: TaxoSS-0.1.5-py2-none-any.whl
  • Upload date:
  • Size: 32.3 MB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.3

File hashes

Hashes for TaxoSS-0.1.5-py2-none-any.whl
Algorithm Hash digest
SHA256 ea308db27227434ecf9b0d215fcec17ca21babd51146f6a67832ab437e82ce65
MD5 f7e50b214450dc3d77f34cac9833fb7f
BLAKE2b-256 2da8e69be856167f0571367f83ad603fbba2fdfbeb766cb1f766976d911a5b92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page