BATS and TBATS for time series forecasting
Project description
BATS and TBATS time series forecasting
Package provides BATS and TBATS time series forecasting methods described in:
De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex seasonal patterns using exponential smoothing, Journal of the American Statistical Association, 106(496), 1513-1527.
Installation
From pypi:
pip install tbats
Import via:
from tbats import BATS, TBATS
Minimal working example:
from tbats import TBATS
import numpy as np
# required on windows for multi-processing,
# see https://docs.python.org/2/library/multiprocessing.html#windows
if __name__ == '__main__':
np.random.seed(2342)
t = np.array(range(0, 160))
y = 5 * np.sin(t * 2 * np.pi / 7) + 2 * np.cos(t * 2 * np.pi / 30.5) + \
((t / 20) ** 1.5 + np.random.normal(size=160) * t / 50) + 10
# Create estimator
estimator = TBATS(seasonal_periods=[14, 30.5])
# Fit model
fitted_model = estimator.fit(y)
# Forecast 14 steps ahead
y_forecasted = fitted_model.forecast(steps=14)
# Summarize fitted model
print(fitted_model.summary())
Reading model details
# Time series analysis
print(fitted_model.y_hat) # in sample prediction
print(fitted_model.resid) # in sample residuals
print(fitted_model.aic)
# Reading model parameters
print(fitted_model.params.alpha)
print(fitted_model.params.beta)
print(fitted_model.params.x0)
print(fitted_model.params.components.use_box_cox)
print(fitted_model.params.components.seasonal_harmonics)
See examples directory for more details.
Troubleshooting
BATS and TBATS tries multitude of models under the hood and may appear slow when fitting to long time series. In order to speed it up you can start with constrained model search space. It is recommended to run it without Box-Cox transformation and ARMA errors modelling that are the slowest model elements:
# Create estimator
estimator = TBATS(
seasonal_periods=[14, 30.5],
use_arma_errors=False, # shall try only models without ARMA
use_box_cox=False # will not use Box-Cox
)
fitted_model = estimator.fit(y)
In some environment configurations parallel computation of models freezes. Reason for this is unclear yet. If the process appears to be stuck you can try running it on a single core:
estimator = TBATS(
seasonal_periods=[14, 30.5],
n_jobs=1
)
fitted_model = estimator.fit(y)
For Contributors
Building package:
pip install -e .[dev]
Unit and integration tests:
pytest test/
R forecast package comparison tests. Those DO NOT RUN with default test command, you need R and forecast package installed:
pytest test_R/
Comparison to R implementation
Python implementation is meant to be as much as possible equivalent to R implementation in forecast package.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tbats-1.1.3.tar.gz
.
File metadata
- Download URL: tbats-1.1.3.tar.gz
- Upload date:
- Size: 32.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dccd0d4cd9e2fde30bf19a944ee957d2f865975846284f48ce673992c4f5d89e |
|
MD5 | 121787ad4e783ee168e70375333fe282 |
|
BLAKE2b-256 | 7f647df49efe740e055d8e51a424daecba78c08236c456749ff7f087d4f7cee8 |
File details
Details for the file tbats-1.1.3-py3-none-any.whl
.
File metadata
- Download URL: tbats-1.1.3-py3-none-any.whl
- Upload date:
- Size: 44.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aff37f39115583028dacbd87227bc2ac65e696ea25543ddcd78e334e1fbe8e3a |
|
MD5 | 3fbb553b5b9d4d7e69831c59c99f6b49 |
|
BLAKE2b-256 | 63941949dc644c3fa05b736b988dc8058122f8c0187778ff9f18070bce2d4ddd |