Skip to main content

BATS and TBATS for time series forecasting

Project description

# BATS and TBATS time series forecasting

Package provides BATS and TBATS time series forecasting methods described in:

> De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex seasonal patterns using exponential smoothing, Journal of the American Statistical Association, 106(496), 1513-1527.


## Installation

From pypi:

```bash
pip install tbats
```

Import via:

```python
from tbats import BATS, TBATS
```

## Minimal working example:

```python
from tbats import TBATS
import numpy as np

# required on windows for multi-processing,
# see https://docs.python.org/2/library/multiprocessing.html#windows
if __name__ == '__main__':
np.random.seed(2342)
t = np.array(range(0, 160))
y = 5 * np.sin(t * 2 * np.pi / 7) + 2 * np.cos(t * 2 * np.pi / 30.5) + \
((t / 20) ** 1.5 + np.random.normal(size=160) * t / 50) + 10

# Create estimator
estimator = TBATS(seasonal_periods=[14, 30.5])

# Fit model
fitted_model = estimator.fit(y)

# Forecast 14 steps ahead
y_forecasted = fitted_model.forecast(steps=14)

# Summarize fitted model
print(fitted_model.summary())
```

Reading model details

```python
# Time series analysis
print(fitted_model.y_hat) # in sample prediction
print(fitted_model.resid) # in sample residuals
print(fitted_model.aic)

# Reading model parameters
print(fitted_model.params.alpha)
print(fitted_model.params.beta)
print(fitted_model.params.x0)
print(fitted_model.params.components.use_box_cox)
print(fitted_model.params.components.seasonal_harmonics)
```

See **examples** directory for more details

## For Contributors

Building package:

```bash
pip install -e .[dev]
```

Unit and integration tests:

```bash
python setup.py test
```

R forecast package comparison tests. Those DO NOT RUN with default test command, you need R forecast package installed:
```bash
python setup.py test_r
```

## Comparison to R implementation

Python implementation is meant to be as much as possible equivalent to R implementation in forecast package.

- BATS in R https://www.rdocumentation.org/packages/forecast/versions/8.4/topics/bats
- TBATS in R: https://www.rdocumentation.org/packages/forecast/versions/8.4/topics/tbats








Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for tbats, version 1.0.3
Filename, size File type Python version Upload date Hashes
Filename, size tbats-1.0.3-py3-none-any.whl (42.5 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size tbats-1.0.3.tar.gz (30.6 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page