Skip to main content

BATS and TBATS for time series forecasting

Project description

# BATS and TBATS time series forecasting

Package provides BATS and TBATS time series forecasting methods described in:

> De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex seasonal patterns using exponential smoothing, Journal of the American Statistical Association, 106(496), 1513-1527.


## Installation

From pypi:

```bash
pip install tbats
```

Import via:

```python
from tbats import BATS, TBATS
```

## Minimal working example:

```python
from tbats import TBATS
import numpy as np

# required on windows for multi-processing,
# see https://docs.python.org/2/library/multiprocessing.html#windows
if __name__ == '__main__':
np.random.seed(2342)
t = np.array(range(0, 160))
y = 5 * np.sin(t * 2 * np.pi / 7) + 2 * np.cos(t * 2 * np.pi / 30.5) + \
((t / 20) ** 1.5 + np.random.normal(size=160) * t / 50) + 10

# Create estimator
estimator = TBATS(seasonal_periods=[14, 30.5])

# Fit model
fitted_model = estimator.fit(y)

# Forecast 14 steps ahead
y_forecasted = fitted_model.forecast(steps=14)

# Summarize fitted model
print(fitted_model.summary())
```

Reading model details

```python
# Time series analysis
print(fitted_model.y_hat) # in sample prediction
print(fitted_model.resid) # in sample residuals
print(fitted_model.aic)

# Reading model parameters
print(fitted_model.params.alpha)
print(fitted_model.params.beta)
print(fitted_model.params.x0)
print(fitted_model.params.components.use_box_cox)
print(fitted_model.params.components.seasonal_harmonics)
```

See **examples** directory for more details

## For Contributors

Building package:

```bash
pip install -e .[dev]
```

Unit and integration tests:

```bash
python setup.py test
```

R forecast package comparison tests. Those DO NOT RUN with default test command, you need R forecast package installed:
```bash
python setup.py test_r
```

## Comparison to R implementation

Python implementation is meant to be as much as possible equivalent to R implementation in forecast package.

- BATS in R https://www.rdocumentation.org/packages/forecast/versions/8.4/topics/bats
- TBATS in R: https://www.rdocumentation.org/packages/forecast/versions/8.4/topics/tbats








Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tbats-1.0.5.tar.gz (30.7 kB view details)

Uploaded Source

Built Distribution

tbats-1.0.5-py3-none-any.whl (42.8 kB view details)

Uploaded Python 3

File details

Details for the file tbats-1.0.5.tar.gz.

File metadata

  • Download URL: tbats-1.0.5.tar.gz
  • Upload date:
  • Size: 30.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for tbats-1.0.5.tar.gz
Algorithm Hash digest
SHA256 16b7e966bb04bf388ba0319408db5765cb0d6f73c89654496fcb1e96aabc3669
MD5 5c6bbf111c7405543d7da30a28109bc3
BLAKE2b-256 12a1cf0d68d67109d7f5770abeaaa0e79b5444872af7714632a22d7baaa047b4

See more details on using hashes here.

File details

Details for the file tbats-1.0.5-py3-none-any.whl.

File metadata

  • Download URL: tbats-1.0.5-py3-none-any.whl
  • Upload date:
  • Size: 42.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for tbats-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 8269d7c4dd50ed6f30f1a61d5715e46ba09f90612dbc7041f4375dd0327d5480
MD5 e3f9a9596a5dc8b65bfd8635889518d2
BLAKE2b-256 4d66cf4eac2761f1eeae1cf3e2d6e3a0519a21d1fbf2d79bc9fe1c41b4ee11d9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page