BATS and TBATS for time series forecasting
Project description
# BATS and TBATS time series forecasting
Package provides BATS and TBATS time series forecasting methods described in:
> De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex seasonal patterns using exponential smoothing, Journal of the American Statistical Association, 106(496), 1513-1527.
## Installation
From pypi:
```bash
pip install tbats
```
Import via:
```python
from tbats import BATS, TBATS
```
## Minimal working example:
```python
from tbats import TBATS
import numpy as np
# required on windows for multi-processing,
# see https://docs.python.org/2/library/multiprocessing.html#windows
if __name__ == '__main__':
np.random.seed(2342)
t = np.array(range(0, 160))
y = 5 * np.sin(t * 2 * np.pi / 7) + 2 * np.cos(t * 2 * np.pi / 30.5) + \
((t / 20) ** 1.5 + np.random.normal(size=160) * t / 50) + 10
# Create estimator
estimator = TBATS(seasonal_periods=[14, 30.5])
# Fit model
fitted_model = estimator.fit(y)
# Forecast 14 steps ahead
y_forecasted = fitted_model.forecast(steps=14)
# Summarize fitted model
print(fitted_model.summary())
```
Reading model details
```python
# Time series analysis
print(fitted_model.y_hat) # in sample prediction
print(fitted_model.resid) # in sample residuals
print(fitted_model.aic)
# Reading model parameters
print(fitted_model.params.alpha)
print(fitted_model.params.beta)
print(fitted_model.params.x0)
print(fitted_model.params.components.use_box_cox)
print(fitted_model.params.components.seasonal_harmonics)
```
See **examples** directory for more details
## For Contributors
Building package:
```bash
pip install -e .[dev]
```
Unit and integration tests:
```bash
python setup.py test
```
R forecast package comparison tests. Those DO NOT RUN with default test command, you need R forecast package installed:
```bash
python setup.py test_r
```
## Comparison to R implementation
Python implementation is meant to be as much as possible equivalent to R implementation in forecast package.
- BATS in R https://www.rdocumentation.org/packages/forecast/versions/8.4/topics/bats
- TBATS in R: https://www.rdocumentation.org/packages/forecast/versions/8.4/topics/tbats
Package provides BATS and TBATS time series forecasting methods described in:
> De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex seasonal patterns using exponential smoothing, Journal of the American Statistical Association, 106(496), 1513-1527.
## Installation
From pypi:
```bash
pip install tbats
```
Import via:
```python
from tbats import BATS, TBATS
```
## Minimal working example:
```python
from tbats import TBATS
import numpy as np
# required on windows for multi-processing,
# see https://docs.python.org/2/library/multiprocessing.html#windows
if __name__ == '__main__':
np.random.seed(2342)
t = np.array(range(0, 160))
y = 5 * np.sin(t * 2 * np.pi / 7) + 2 * np.cos(t * 2 * np.pi / 30.5) + \
((t / 20) ** 1.5 + np.random.normal(size=160) * t / 50) + 10
# Create estimator
estimator = TBATS(seasonal_periods=[14, 30.5])
# Fit model
fitted_model = estimator.fit(y)
# Forecast 14 steps ahead
y_forecasted = fitted_model.forecast(steps=14)
# Summarize fitted model
print(fitted_model.summary())
```
Reading model details
```python
# Time series analysis
print(fitted_model.y_hat) # in sample prediction
print(fitted_model.resid) # in sample residuals
print(fitted_model.aic)
# Reading model parameters
print(fitted_model.params.alpha)
print(fitted_model.params.beta)
print(fitted_model.params.x0)
print(fitted_model.params.components.use_box_cox)
print(fitted_model.params.components.seasonal_harmonics)
```
See **examples** directory for more details
## For Contributors
Building package:
```bash
pip install -e .[dev]
```
Unit and integration tests:
```bash
python setup.py test
```
R forecast package comparison tests. Those DO NOT RUN with default test command, you need R forecast package installed:
```bash
python setup.py test_r
```
## Comparison to R implementation
Python implementation is meant to be as much as possible equivalent to R implementation in forecast package.
- BATS in R https://www.rdocumentation.org/packages/forecast/versions/8.4/topics/bats
- TBATS in R: https://www.rdocumentation.org/packages/forecast/versions/8.4/topics/tbats
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
tbats-1.0.5.tar.gz
(30.7 kB
view details)
Built Distribution
tbats-1.0.5-py3-none-any.whl
(42.8 kB
view details)
File details
Details for the file tbats-1.0.5.tar.gz
.
File metadata
- Download URL: tbats-1.0.5.tar.gz
- Upload date:
- Size: 30.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 16b7e966bb04bf388ba0319408db5765cb0d6f73c89654496fcb1e96aabc3669 |
|
MD5 | 5c6bbf111c7405543d7da30a28109bc3 |
|
BLAKE2b-256 | 12a1cf0d68d67109d7f5770abeaaa0e79b5444872af7714632a22d7baaa047b4 |
File details
Details for the file tbats-1.0.5-py3-none-any.whl
.
File metadata
- Download URL: tbats-1.0.5-py3-none-any.whl
- Upload date:
- Size: 42.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8269d7c4dd50ed6f30f1a61d5715e46ba09f90612dbc7041f4375dd0327d5480 |
|
MD5 | e3f9a9596a5dc8b65bfd8635889518d2 |
|
BLAKE2b-256 | 4d66cf4eac2761f1eeae1cf3e2d6e3a0519a21d1fbf2d79bc9fe1c41b4ee11d9 |