Skip to main content

tblfaker is a Python library to generate fake tabular data.

Project description

Summary

tblfaker is a Python library to generate fake tabular data.

PyPI package version Supported Python versions Linux/macOS CI status Windows CI status Test coverage

Usage

Basic Usage

Generate tabular data at random

Sample Code:
from tblfaker import TableFaker

faker = TableFaker()

print("[1]")
for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)

print("\n[2]")
for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)
Output:
[1]
Row(name='Jonathan Hendrix', address='368 Melanie Inlet Suite 890\nLake Stephanie, MT 17441')
Row(name='Kristina Simmons', address='3867 Perry Alley Suite 957\nLindafurt, FL 12507')
Row(name='Rebecca Velasquez', address='107 Karla Forges Apt. 925\nEast Jonathan, NC 85462')
Row(name='Jordan Morris', address='6341 Jessica Walks\nReynoldsshire, MD 05131')

[2]
Row(name='Caitlin Bush', address='87380 Barbara Haven Suite 042\nHutchinsonburgh, IA 39544')
Row(name='Jennifer King', address='39729 Gray Inlet Apt. 693\nPort Peter, AL 80733')
Row(name='Stephanie Smith', address='256 Emily Street\nCooperhaven, MS 70299')
Row(name='Nicholas Miller', address='59845 Daniel Ford Suite 729\nDamontown, UT 19811

Reproduce same tabular data

Fake tabular data can reproduce by passing the same seed value to TableFaker constructor.

Sample Code:
from tblfaker import TableFaker

seed = 1

print("[1]")
faker = TableFaker(seed=seed)
for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)

print("\n[2]")
faker = TableFaker(seed=seed)
for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)
Output:
[1]
Row(name='Ryan Gallagher', address='6317 Mary Light\nSmithview, HI 13900')
Row(name='Amanda Johnson', address='3608 Samuel Mews Apt. 337\nHousebury, WA 13608')
Row(name='Willie Heath', address='868 Santiago Grove\nNicolehaven, NJ 05026')
Row(name='Dr. Jared Ortega', address='517 Rodriguez Divide Suite 570\nWest Melinda, NH 85325')

[2]
Row(name='Ryan Gallagher', address='6317 Mary Light\nSmithview, HI 13900')
Row(name='Amanda Johnson', address='3608 Samuel Mews Apt. 337\nHousebury, WA 13608')
Row(name='Willie Heath', address='868 Santiago Grove\nNicolehaven, NJ 05026')
Row(name='Dr. Jared Ortega', address='517 Rodriguez Divide Suite 570\nWest Melinda, NH 85325')

Set locale for fake data

Sample Code:
from tblfaker import TableFaker

faker = TableFaker(locale="ja_JP")

for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)
Output:
Row(name='工藤 健一', address='宮崎県武蔵村山市六番町19丁目15番11号')
Row(name='井上 聡太郎', address='愛媛県長生郡白子町豊町33丁目7番20号 戸島コート620')
Row(name='大垣 美加子', address='京都府山武郡芝山町三ノ輪34丁目15番8号 クレスト所野560')
Row(name='宇野 くみ子', address='宮城県八街市西浅草20丁目24番6号')

Generate data in other data formats

Generate data in dict

Sample Code:
from tblfaker import TableFaker
import json

faker = TableFaker(seed=1)

print(json.dumps(faker.generate(["name", "address"], rows=2, table_name="dict").as_dict(), indent=4))
Output:
{
    "dict": [
        {
            "name": "Ryan Gallagher",
            "address": "6317 Mary Light\nSmithview, HI 13900"
        },
        {
            "name": "Amanda Johnson",
            "address": "3608 Samuel Mews Apt. 337\nHousebury, WA 13608"
        }
    ]
}

Generate data in pandas.DataFrame

Sample Code:
from tblfaker import TableFaker

faker = TableFaker(seed=seed)

print(faker.generate(["name", "address"], rows=4).as_dataframe())
Output:
               name                                            address
0    Ryan Gallagher               6317 Mary Light\nSmithview, HI 13900
1    Amanda Johnson     3608 Samuel Mews Apt. 337\nHousebury, WA 13608
2      Willie Heath          868 Santiago Grove\nNicolehaven, NJ 05026
3  Dr. Jared Ortega  517 Rodriguez Divide Suite 570\nWest Melinda, ...

Installation

pip install tblfaker

Dependencies

Python 2.7+ or 3.5+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tblfaker-0.0.5.tar.gz (8.9 kB view details)

Uploaded Source

Built Distribution

tblfaker-0.0.5-py2.py3-none-any.whl (6.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file tblfaker-0.0.5.tar.gz.

File metadata

  • Download URL: tblfaker-0.0.5.tar.gz
  • Upload date:
  • Size: 8.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for tblfaker-0.0.5.tar.gz
Algorithm Hash digest
SHA256 11c9dc00612e78ce77edf2a23adca9c35e47f3f66bd76d8d50d222effb140d11
MD5 4e5b5597696aaffdbbc6a1f383451746
BLAKE2b-256 2bc1fa16272c160a67bd3401be3d8590b8a5987951fd5a748fe17ec124caeff9

See more details on using hashes here.

File details

Details for the file tblfaker-0.0.5-py2.py3-none-any.whl.

File metadata

  • Download URL: tblfaker-0.0.5-py2.py3-none-any.whl
  • Upload date:
  • Size: 6.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for tblfaker-0.0.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ba47d30ab75ce72c21636201d80bf9399a08e2e0d944d47c5a95096917af30bf
MD5 0265ab3246b9db28497d3b84b7df5065
BLAKE2b-256 534cffc70e096ad6cfab158cf799271faeb6f4c45aaa67898838ce920c132384

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page