Skip to main content

tblfaker is a Python library to generate fake tabular data.

Project description

Summary

tblfaker is a Python library to generate fake tabular data.

PyPI package version Supported Python versions Linux/macOS CI status Windows CI status Test coverage

Usage

Basic Usage

Generate tabular data at random

Sample Code:
from tblfaker import TableFaker

faker = TableFaker()

print("[1]")
for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)

print("\n[2]")
for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)
Output:
[1]
Row(name='Jonathan Hendrix', address='368 Melanie Inlet Suite 890\nLake Stephanie, MT 17441')
Row(name='Kristina Simmons', address='3867 Perry Alley Suite 957\nLindafurt, FL 12507')
Row(name='Rebecca Velasquez', address='107 Karla Forges Apt. 925\nEast Jonathan, NC 85462')
Row(name='Jordan Morris', address='6341 Jessica Walks\nReynoldsshire, MD 05131')

[2]
Row(name='Caitlin Bush', address='87380 Barbara Haven Suite 042\nHutchinsonburgh, IA 39544')
Row(name='Jennifer King', address='39729 Gray Inlet Apt. 693\nPort Peter, AL 80733')
Row(name='Stephanie Smith', address='256 Emily Street\nCooperhaven, MS 70299')
Row(name='Nicholas Miller', address='59845 Daniel Ford Suite 729\nDamontown, UT 19811

Reproduce same tabular data

Fake tabular data can reproduce by passing the same seed value to TableFaker constructor.

Sample Code:
from tblfaker import TableFaker

seed = 1

print("[1]")
faker = TableFaker(seed=seed)
for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)

print("\n[2]")
faker = TableFaker(seed=seed)
for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)
Output:
[1]
Row(name='Ryan Gallagher', address='6317 Mary Light\nSmithview, HI 13900')
Row(name='Amanda Johnson', address='3608 Samuel Mews Apt. 337\nHousebury, WA 13608')
Row(name='Willie Heath', address='868 Santiago Grove\nNicolehaven, NJ 05026')
Row(name='Dr. Jared Ortega', address='517 Rodriguez Divide Suite 570\nWest Melinda, NH 85325')

[2]
Row(name='Ryan Gallagher', address='6317 Mary Light\nSmithview, HI 13900')
Row(name='Amanda Johnson', address='3608 Samuel Mews Apt. 337\nHousebury, WA 13608')
Row(name='Willie Heath', address='868 Santiago Grove\nNicolehaven, NJ 05026')
Row(name='Dr. Jared Ortega', address='517 Rodriguez Divide Suite 570\nWest Melinda, NH 85325')

Set locale for fake data

Sample Code:
from tblfaker import TableFaker

faker = TableFaker(locale="ja_JP")

for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)
Output:
Row(name='工藤 健一', address='宮崎県武蔵村山市六番町19丁目15番11号')
Row(name='井上 聡太郎', address='愛媛県長生郡白子町豊町33丁目7番20号 戸島コート620')
Row(name='大垣 美加子', address='京都府山武郡芝山町三ノ輪34丁目15番8号 クレスト所野560')
Row(name='宇野 くみ子', address='宮城県八街市西浅草20丁目24番6号')

Generate data in other data formats

Generate data in dict

Sample Code:
from tblfaker import TableFaker
import json

faker = TableFaker(seed=1)

print(json.dumps(faker.generate(["name", "address"], rows=2, table_name="dict").as_dict(), indent=4))
Output:
{
    "dict": [
        {
            "name": "Ryan Gallagher",
            "address": "6317 Mary Light\nSmithview, HI 13900"
        },
        {
            "name": "Amanda Johnson",
            "address": "3608 Samuel Mews Apt. 337\nHousebury, WA 13608"
        }
    ]
}

Generate data in pandas.DataFrame

Sample Code:
from tblfaker import TableFaker

faker = TableFaker(seed=seed)

print(faker.generate(["name", "address"], rows=4).as_dataframe())
Output:
               name                                            address
0    Ryan Gallagher               6317 Mary Light\nSmithview, HI 13900
1    Amanda Johnson     3608 Samuel Mews Apt. 337\nHousebury, WA 13608
2      Willie Heath          868 Santiago Grove\nNicolehaven, NJ 05026
3  Dr. Jared Ortega  517 Rodriguez Divide Suite 570\nWest Melinda, ...

Installation

pip install tblfaker

Dependencies

Python 3.5+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tblfaker-0.1.0.tar.gz (10.2 kB view details)

Uploaded Source

Built Distribution

tblfaker-0.1.0-py3-none-any.whl (6.2 kB view details)

Uploaded Python 3

File details

Details for the file tblfaker-0.1.0.tar.gz.

File metadata

  • Download URL: tblfaker-0.1.0.tar.gz
  • Upload date:
  • Size: 10.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.5.9

File hashes

Hashes for tblfaker-0.1.0.tar.gz
Algorithm Hash digest
SHA256 3a8a3295593996d354f8234bcf08c291623184a3b0179d55dda9a11f621476da
MD5 2210598997fcb673d36aa719b8657890
BLAKE2b-256 b0d1c76eba6a2206cd596e68e82aba50355fcb64408dfccae6e882a898d58ac6

See more details on using hashes here.

File details

Details for the file tblfaker-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: tblfaker-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 6.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.5.9

File hashes

Hashes for tblfaker-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 593e856a1e7cdccae48d0241cc8f8f09b344101b992ba7340e660a4e71fc3f9f
MD5 75b3fbcce3063225e52edb65f2092aca
BLAKE2b-256 ca31655fef035cdd39e3e0fa244f0eb721d430cddce9a05fefdd6c95d70e8c85

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page