Tree-based synthetic control methods
Project description
*** ATTENTION ***
Don't immidiately run pip install tbscm
. See Section Installation.
Tree-based Synthetic Control Methods (tbscm)
This package implements the Tree-based Synthetic Control Methods (tbscm) from Mühlbach & Nielsen (2021), see https://arxiv.org/abs/1909.03968.
The method is essentially a nonparametric extension of the classic synthetical control group estimator proposed by Alberto Abadie and co-authors.
Please contact the authors below if you find any bugs or have any suggestions for improvement. Thank you!
Author: Nicolaj Søndergaard Mühlbach (n.muhlbach at gmail dot com, muhlbach at mit dot edu)
Code dependencies
This code has the following dependencies:
- Python >=3.6
- numpy >=1.19
- pandas >=1.3
- mlregression >=0.1.6
Note that mlregression
in turn depends on
- scikit-learn >=1
- scikit-learn-intelex >= 2021.3
- daal >= 2021.3
- daal4py >= 2021.3
- tbb >= 2021.4
- xgboost >=1.3
- lightgbm >=3.2
Installation
Before calling pip install tbscm
, we recommend installing mlregression
. For installation of mlregression
and dependensies, please visit: https://pypi.org/project/mlregression/.
Usage
We demonstrate the use of mlregression below, using random forests, xgboost, and lightGBM as underlying regressors.
#------------------------------------------------------------------------------
# Libraries
#------------------------------------------------------------------------------
# Standard
import time, random
import numpy as np
# User
from tbscm.utils import data
from tbscm.synthetic_controls import SyntheticControl as SC
from tbscm.synthetic_controls import TreeBasedSyntheticControl as TBSC
from tbscm.synthetic_controls import ElasticNetSyntheticControl as ENSC
#------------------------------------------------------------------------------
# Settings
#------------------------------------------------------------------------------
# Number of covariates
p = 2
ar_lags = 3
# Number of max models to run
max_n_models = 5
# Data settings
data_settings = {
# General
"T0":500,
"T1":500,
"ate":1,
# Errors
"eps_mean":0,
"eps_std":1,
"eps_cov_xx":0, # How the X's covary with each other
"eps_cov_yy":0.1, # How the X's covary with y
# X
"X_type":"AR",
"X_dist":"normal",
"X_dim":p,
"mu":0,
"sigma":1,
"covariance":0,
"AR_lags":ar_lags,
"AR_coefs":1/np.exp(np.arange(1,ar_lags+1)),
# Y=f*
"f":data.generate_linear_data, # generate_linear_data, generate_friedman_data_1, generate_friedman_data_2,
}
# Start timer
t0 = time.time()
# Set seed
random.seed(1991)
#------------------------------------------------------------------------------
# Simple example
#------------------------------------------------------------------------------
# Generate data
df = data.simulate_data(**data_settings)
# True ate
ate = data_settings["ate"]
# Extract data
Y = df["Y"]
W = df["W"]
X = df[[col for col in df.columns if "X" in col]]
# Instantiate SC-objects
sc = SC()
tbsc = TBSC(max_n_models=max_n_models)
ensc = ENSC(max_n_models=max_n_models)
# Fit
sc.fit(Y=Y,W=W,X=X)
print(f"Estimated ATE using SC: {np.around(sc.average_treatment_effet_,2)}")
tbsc.fit(Y=Y,W=W,X=X)
print(f"Estimated ATE using TB-SC: {np.around(tbsc.average_treatment_effet_,2)}")
ensc.fit(Y=Y,W=W,X=X)
print(f"Estimated ATE using EN-SC: {np.around(ensc.average_treatment_effet_,2)}")
# Bootstrap
bootstrapped_results = tbsc.bootstrap_ate()
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tbscm-0.0.4.tar.gz
.
File metadata
- Download URL: tbscm-0.0.4.tar.gz
- Upload date:
- Size: 15.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 59f39cfe5a24ee88115d18cd5a8a3ec1fbb96035f3d22a3a8228f2374251d8e5 |
|
MD5 | 9a95ef779b44d0e3996a4af54085c109 |
|
BLAKE2b-256 | 701fc47e7777ccc8324b1a846cc93ab970fe4c7c2d94c94a71237cd2fd717770 |
File details
Details for the file tbscm-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: tbscm-0.0.4-py3-none-any.whl
- Upload date:
- Size: 17.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 205cb4ae1a289aa10483ec4738d75409656a3ea8d22fd627c9a2b1fe6309cd65 |
|
MD5 | 7c1bf7c87c3f1c8898499fadc3b2e587 |
|
BLAKE2b-256 | 9377e2016260aba275889e13809f788e213c873a80fc94ebf93d8e8ae9cbeb4c |