Feature Store client using Teradata Dataframes
Project description
Teradata Feature Store Client
Installation
You can install via pip. The minimum python version required is 3.6+
pip install tdfs
Usage
First, you'll need teradataml
context:
from teradataml.context.context import *
import getpass
create_context('mycluster.teradata.com', 'my_user', getpass.getpass())
Next, use this context to get connection and instantiate Feature Store client:
from tdfs import FeatureStore
fs = FeatureStore(get_connection(), metadata_table = 'my_database.fs_metadata')
It will create metadata table if it doesn't exist.
Register feature groups
fs.register_feature_group(entity = 'patient', table = 'dm.cust_profile', entity_key_column = 'cust_id', features = {'Age':'Age'}, date_column = 'snapshot_dt')
Discover registered features
fs.list_entities()
fs.list_features('patient')
fs.get_feature_details('patient', 'Age')
Get feature set for training/evaluation/scoring
train_df = fs.get_featureset_df('patient','2021-07-12',['Age','DiPedFunc', 'TwoHourSerIns'])
train_pdf = train_df.to_pandas()
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
tdfs-0.0.4.tar.gz
(3.4 kB
view details)
Built Distribution
tdfs-0.0.4-py3-none-any.whl
(3.4 kB
view details)
File details
Details for the file tdfs-0.0.4.tar.gz
.
File metadata
- Download URL: tdfs-0.0.4.tar.gz
- Upload date:
- Size: 3.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3b01bcf4d7c70d28f579275f1fe7124a47a6440eb2592ece35a91b30bb746a33 |
|
MD5 | b8e28b05c0ce204b798537dd19954edd |
|
BLAKE2b-256 | 6e03696d55a923a3565c7eccad1251b424a177f169811a9b2c714b4a263df35b |
File details
Details for the file tdfs-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: tdfs-0.0.4-py3-none-any.whl
- Upload date:
- Size: 3.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b1c78fc43c416bf39941f90be20b7066d0737a780396e70d9485f59a8b804243 |
|
MD5 | b05f729fb410702a698b7a7a339dbca9 |
|
BLAKE2b-256 | 12623e7da9c760ba408904b577192bf02099448e4f68f0a20e4a5a672e2668f0 |