pyTDGL: Time-dependent Ginzburg-Landau in Python.
Project description
pyTDGL
Time-dependent Ginzburg-Landau in Python
Motivation
pyTDGL
solves a 2D generalized time-dependent Ginzburg-Landau (TDGL) equation, enabling simulations of vortex and phase dynamics in thin film superconducting devices.
Learn pyTDGL
The documentation for pyTDGL
can be found at py-tdgl.readthedocs.io.
Try pyTDGL
Click the badge below and navigate to docs/notebooks/
to try pyTDGL
interactively online via Binder
Acknowledgments
Parts of this package have been adapted from SuperDetectorPy
, a GitHub repo authored by Mattias Jönsson. Both SuperDetectorPy
and py-tdgl
are released under the open-source MIT License. If you use either package in an academic publication or similar, please consider citing the following:
- Mattias Jönsson, Theory for superconducting few-photon detectors (Doctoral dissertation), KTH Royal Institute of Technology (2022) (Link)
- Mattias Jönsson, Robert Vedin, Samuel Gyger, James A. Sutton, Stephan Steinhauer, Val Zwiller, Mats Wallin, Jack Lidmar, Current crowding in nanoscale superconductors within the Ginzburg-Landau model, Phys. Rev. Applied 17, 064046 (2022) (Link)
The user interface is adapted from SuperScreen
.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.