Skip to main content

The Teal Programming Language

Project description

The Teal Programming Language

Tests PyPI Gitter

Teal is a programming language for serverless cloud applications, designed for passing data around between Python functions. Concurrency supported. Execution tracing built-in.

Key features:

  • Very little infrastructure, for applications of any complexity. The Teal runtime shares 4 Lambda functions and stores execution state in a DynamoDB table.
  • Minimal wasted server time. When your code is waiting for another thread to finish, the Lambda is completely stopped.
  • Simple mental models. Teal programs can be traced, profiled, and the code can be reviewed just like any other language. Want to see where your Python function is being used? Just grep your codebase.
  • Local testing is first-class. Teal programs can be run locally, so you can test your entire workflow before deployment.

Teal runs locally or on AWS Lambda. Teal threads can be suspended while another thread finishes. Execution data is stored in memory or in a DynamoDB table.

Concurrency

Documentation coming soon! For now, browse the the examples or the check out the Teal Playground.

FAQ

Why is this not a library/DSL in Python?

When Teal threads wait on a Future, they stop completely. The Lambda function saves the machine state and then terminates. When the Future resolves, the resolving thread restarts any waiting threads by invoking new Lambdas to pick up execution.

To achieve the same thing in Python, the framework would need to dump the entire Python VM state to disk, and then reload it at a later point -- I don't know Python internals well enough to do this, and it felt like a huge task.

How is Teal like Go?

Goroutines are very lightweight, while Teal async functions are pretty heavy -- they involve creating a new Lambda (or process, when running locally).

Teal's concurrency model is similar to Go's, but channels are not fully implemented so data can only be sent to/from a thread at call/return points.

Is this an infrastructure-as-code tool?

No, Teal doesn't create or manage infrastructure. There are already great tools to do that (Terraform, Pulumi, Serverless Framework, etc). Teal requires infrastructure to run on AWS, and you can set that up however you prefer.

Instead, Teal reduces the amount of infrastructure you need. Instead of a distinct Lambda function for every piece of application logic, you only need the core Teal interpreter Lambda functions.

Getting started

Teal is alpha quality - don't use it for mission critical things.

$ pip install teal-lang

This gives you the teal executable.

Browse the the examples to explore the syntax.

Check out an example AWS deployment using the Serverless Framework.

Create an issue if none of this makes sense, or you'd like help getting started.

Teal May Not Be For You!

Teal is for you if:

  • you want to build ETL pipelines.
  • you have a repository of data processing scripts, and want to connect them together in the cloud.
  • you insist on being able to test as much as possible locally.
  • You don't have time (or inclination) to deploy and manage a full-blown platform (Spark, Airflow, etc).
  • You're wary of Step Functions (and similar) because of vendor lock-in and cost.

Core principles guiding Teal design:

  • Do the heavy-lifting in Python.
  • Keep business logic out of infrastructure (no more hard-to-test logic defined in IaC, please).
  • Workflows must be fully tested locally before deployment.

Why Teal?

Teal is not Kubernetes, because it's not trying to let you easily scale Dockerised services.

Teal is not containerisation, because.. well because there are no containers here.

Teal is not a general-purpose programming language, because that would be needlessly reinventing the wheel.

Teal is a very simple compiled language with only a few constructs:

  1. named variables (data, functions)
  2. async/await concurrency primitives
  3. Python (>=3.8) interop
  4. A few basic types

Two interpreters have been implemented so far -- local and AWS Lambda, but there's no reason Teal couldn't run on top of (for example) Kubernetes. Issue #8

Concurrency: Teal gives you "bare-metal concurrency" (i.e. without external coordination) on top of AWS Lambda.

When you do y = async f(x), Teal computes f(x) on a new Lambda instance. And then when you do await y, the current Lambda function terminates, and automatically continues when y is finished being computed. There's no idle server time.

Testing: The local interpreter lets you test your program before deployment, and uses Python threading for concurrency.

Tracing and profiling: Teal has a built-in tracer tool, so it's easy to see where the time is going.

Current Limitations and Roadmap

Teal is alpha quality, which means that it's not thoroughly tested, and lots of breaking changes are planned. This is a non-exhaustive list.

Libraries

Only one Teal program file is supported, but a module/package system is planned.

Error Handling

There's no error handling - if your function fails, you'll have to restart the whole process manually. An exception handling system is planned.

Typing

Function inputs and outputs aren't typed. This is a limitation, and will be fixed soon, probably using ProtoBufs as the interface definition language.

Calling Arbitrary Services

Currently you can only call Teal or Python functions -- arbitrary microservices can't be called. Before Teal v1.0 is released, this will be possible. You will be able to call a long-running third party service (e.g. an AWS ML service) as a normal Teal function and await on the result.

Dictionary (associative map) primitives

Teal really should be able to natively manipulate JSON objects. This may happen before v1.0.


Contributing

Contributions of any form are welcome! See CONTRIBUTING.md

Minimum requirements to develop:

  • Docker (to run local DynamoDB instance)
  • Poetry (deps)

Use scripts/run_dynamodb_local.sh to start the database and web UI. Export the environment variables it gives you - these are required by the Teal runtime.

Who?

Teal is maintained by Condense9 Ltd.. Get in touch with ric@condense9.com for bespoke data engineering and other cloud software services.

Teal started because we couldn't find any data engineering tools that were productive and felt like software engineering. As an industry, we've spent decades growing a wealth of computer science knowledge, but building data pipelines in $IaC, or manually crafting workflow DAGs with $AutomationTool, just isn't software.

License

Apache License (Version 2.0). See LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

teal-lang-0.2.1.tar.gz (36.7 kB view details)

Uploaded Source

Built Distribution

teal_lang-0.2.1-py3-none-any.whl (41.9 kB view details)

Uploaded Python 3

File details

Details for the file teal-lang-0.2.1.tar.gz.

File metadata

  • Download URL: teal-lang-0.2.1.tar.gz
  • Upload date:
  • Size: 36.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.8.0 Darwin/19.3.0

File hashes

Hashes for teal-lang-0.2.1.tar.gz
Algorithm Hash digest
SHA256 551565d5af43aa59e39831b966e7a37a1401d7d41ebe8775fdaebb42602f7364
MD5 502427e812d7bddbca9b6efa94c0a767
BLAKE2b-256 c3b4c6ce181aa5756e75ac4c7b8aa198116af91f571e2031d6c045b076583405

See more details on using hashes here.

File details

Details for the file teal_lang-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: teal_lang-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 41.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.8.0 Darwin/19.3.0

File hashes

Hashes for teal_lang-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 49540e96cb3d4edec099d4c264ed19d30bfbd032577e2d76aefced2f4e107c00
MD5 f7bc9660e2acd9b0c5277702c0e2da74
BLAKE2b-256 1dc27a7a9b57a700e96168864ea94e0ec2e8064da10fb7c77fddee1fe01f3dde

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page