A blazingly fast datadict library
Project description
Teapy
Blazingly fast datadict library in Python
Teapy is a high-performance data dictionary library implemented in Rust, designed for blazingly fast operations. It offers the following features:
- Lazy evaluation
- Handling of NaN values
- Multi-threaded processing
- Support for any dimensionality
Setup
Install the latest teapy version with:
pip install teapy
Basic Usage
Creating Expressions
# Expressions can be created in various ways
import numpy as np
import pandas as pd
import polars as pl
import teapy as tp
e1 = tp.Expr([1, 2, 3]) # Create from list
e2 = tp.Expr((1, 2, 3)) # Create from tuple
e3 = tp.Expr(np.array([1, 2, 3]), 'e3') # Create from numpy.ndarray, name is e3
e4 = tp.Expr(pd.Series([1, 2, 3])) # Create from pandas.Series
e5 = tp.Expr(pl.Series([1, 2, 3])) # Create from polars.Series
Creating DataDicts
# DataDicts can be created in different ways
dd1 = tp.DataDict({'a': [1, 2], 'b': [2, 3]}, c=[3, 4]) # Create from dictionary
dd2 = tp.DataDict([tp.Expr([1, 2], 'a'), tp.Expr([2, 3], 'b')]) # Create from list of expressions
dd3 = tp.DataDict(a=[1, 2], b=[2, 3], c=np.array([3, 6, 2])) # Create by specifying key-value pairs
Evaluating Expressions and DataDicts
# Evaluating Expressions
e = tp.Expr([1, 2, 3]).mean()
e.eval() # Execute the expression
e.view # View the memory of the array
e.eview() # Execute the expression and view the memory of the array
e.value() # Execute the expression and copy the memory of the array to a new numpy.ndarray
# Evaluating DataDicts
dd = tp.DataDict({'a': [1, 2]*10, 'b': [2, 3]*10}, c=[3, 4])
dd = dd.select([
dd['a'].ts_mean(3).alias('d'),
dd['b'].ts_std(4).alias('e')
])
dd.eval(['d', 'e']) # Evaluate specific keys in parallel
dd.eval() # Or evaluate all expressions in parallel
print(dd['d'])
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
teapy-0.8.0.tar.gz
(198.1 kB
view details)
Built Distributions
File details
Details for the file teapy-0.8.0.tar.gz
.
File metadata
- Download URL: teapy-0.8.0.tar.gz
- Upload date:
- Size: 198.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: maturin/1.7.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d37ec0de7ff1d3f407c28af1b72558e7e2f1099b5199dd1f5b47d5ce08cedfb0 |
|
MD5 | 3f7e0190439f1d6aa9599b7bad1d45ad |
|
BLAKE2b-256 | 2a07bfabcf69ea9b95aa6a8838f922f79e07f5f107999cbe7d7f7e9355274e28 |
File details
Details for the file teapy-0.8.0-cp38-abi3-win_amd64.whl
.
File metadata
- Download URL: teapy-0.8.0-cp38-abi3-win_amd64.whl
- Upload date:
- Size: 15.2 MB
- Tags: CPython 3.8+, Windows x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: maturin/1.7.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 701a71b38ac7b7f7c79776cb27c0b2669771801fb4c56349d12674d6531b8d4e |
|
MD5 | 2a29ab094adb861845a31ebf091c2d50 |
|
BLAKE2b-256 | 43c2d446a62f88ac162e81d8f672fe6715c4e5fb845a9c9192eadc3de559ef8b |
File details
Details for the file teapy-0.8.0-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: teapy-0.8.0-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 15.7 MB
- Tags: CPython 3.8+, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: maturin/1.7.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 73ce0ad5b884288133ede619cf99dad3cdf5e47a6292fe1fc411b5bf11ae587b |
|
MD5 | 2bc24d16ec31e26bbc11b53f3cd1bf6d |
|
BLAKE2b-256 | 4c7c3810ee7924ce7222bd1feb34cf3b4bd75ef990e6dbb1f451bd4f453f9987 |