Skip to main content

Technical charts with signals

Project description

TechSig

*Package to get technical indicators for given market data based on which Bull and Bear signals are generated. *This enables a non finance background person get the insights of the stock market technicalities in an understandable language. *Function to get the market data is also provided. *Plot are provided for all the techncial indicators which can help analyse the data better. ##Note- All investments, financial opinions expressed by techsig are from personal research and experience of the authors and are intended as educational material.

Author-

  • Aayush Talekar
  • Saloni Jaitly

Requirements:

*Pandas *Numpy *yfinance *plotly

Function description

get_data(ticker, start_date, end_date):

Import daily market data :param ticker: ticker name according to National Stock Exchange :param start_date: format 'yyyy-mm-dd' :param end_date: format 'yyyy-mm-dd' :return: pandas.DataFrame() : OHCLV data on a daily frequency

moving_average(df, exponential=False, simple=False, plot=False, signal=False):

Calculate simple and exponential moving average (ma) for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :param exponential: Boolean: if True, exponential ma is displayed :param simple: Boolean: if True, simple ma is displayed :param plot: Boolean: if True, closing price with ma is plotted :param signal: Boolean: if True, bullish/bearish signals are returned :return: pandas.DataFrame() : moving average of 5 days, 10 days, 20 days, 50 days, 100 days and 200 days

MACD(df, a=12, b=26, c=9, signal=False, plot=False):

Calculate moving average convergence divergence (MACD) for given data
:param df: pandas.DataFrame() :market data downloaded from get_data()
:param a: number of periods for moving average fast line: default = 12
:param b: number of periods for moving average slow line: default = 26
:param c: number of periods for macd signal line: default = 9
:param plot: Boolean: if True, closing price with MACD is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame() : MA_Fast, MA_Slow, MACD, Signal and Positions are returned

RSI (df, time_window=14, signal=False, plot=False):

Calculate relative strength index (RSI) for given data
:param df: pandas.DataFrame() :market data downloaded from get_data()
:param time_window: number of periods for RSI : default = 14
:param plot: Boolean: if True, closing price with RSI is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame() : RSI and Position is returned

IchimokuCloud(df, plot=False):

Calculate Ichimoku Clouds for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :param plot: Boolean: if True, closing price with Ichimoku Clouds are plotted :return: pandas.DataFrame(): Conv_line, Base_line, Lead_span_A, Lead_span_B and Lagging span

ADX(df, trend=False, plot=False):

Calculate average directional index for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :param trend: Boolean: if True, strength of the trend is returned :param plot: Boolean: if True, closing price with ADX is plotted :return: pandas.DataFrame(): ADX, Positive Directional Index and Negative Directional Index

ATR(DF,n=14, plot=False):

Calculate average true range (ATR) for given data
:param DF: pandas.DataFrame() :market data downloaded from get_data()
:param n: number of periods for ATR: default = 14
:param plot: Boolean: if True, closing price with ATR is plotted
:return: pandas.DataFrame(): ATR 

stochastic_oscillator(df, signal=False, plot=False):

Calculate stochastic oscillator %K and %D for given data.    
:param df: pandas.DataFrame() :market data downloaded from get_data()
:param plot: Boolean: if True, closing price with stochastic oscillator is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame(): %K and %D values

OBV(DF, plot=False, signal=False):

Calculate on balance volume (OBV) for given data
:param DF: pandas.DataFrame() :market data downloaded from get_data()
:param plot: Boolean: if True, closing price with OBV is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame(): %K and %D values

ppsr(df):

Calculate Pivot Points, Supports and Resistances for given data
:param df: pandas.DataFrame() :market data downloaded from get_data()
:return: pandas.DataFrame() : Pivot Points, Resistances and Supports

semideviation(df):

Calculate semi deviation for given close price
:param df: pandas.DataFrame(): close price of data
:return: float: value of semi deviation

meandeviation(df):

Calculate mean deviation for given close price
:param df: pandas.DataFrame(): close price of data
:return: float: value of mean deviation

standard_deviation(df, n=21):

Calculate standard Deviation for given data.
:param df: pandas.DataFrame(): close price of data
:param n: number of periods: default = 21
:return: pandas.DataFrame(): moving standard deviations

TSI(df, r=25, s=13, c=9, signal=False, plot=False):

Calculate True Strength Index (TSI) for given data.
:param df: pandas.DataFrame(): market data downloaded from get_data()
:param r: time period for EMA_Fast: default = 25 
:param s: time period for EMA_SLow: default = 13
:param c: time period for Signal Line: default = 9
:param plot: Boolean: if True, closing price with TSI is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame(): Price Change(pc), Price Change Smoothed(pcs), Price Change Double Smooth(pcds), Absolute Price Change(apc),
Absolute Price Change Smoothed(apcs), Absolute Price Change Double Smooth(apcds), TSI and Signal

MFI(df, n=14, signal = False, plot=False):

Calculate Money Flow Index(MFI) for given data.
:param df: pandas.DataFrame(): market data downloaded from get_data()
:param n: number of periods for MFI: default = 14
:param plot: Boolean: if True, closing price with MFI is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame(): Typical Price, Money Flow, MFI

summ(data):

Calculate the summary of the latest date :param df: pandas.DataFrame(): market data downloaded from get_data() :return: pandas.DataFrame(): Three dataframes are returned viz. Moving Average, Technical Indicators and Pivot Points

sentiment_signal(data):

Analysing the overall sentiment based on techncial indicators :param df: pandas.DataFrame(): market data downloaded from get_data() :return: pandas.DataFrame(): bull/bear/neutral signal of the technical indicator

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

techsig-0.0.4.tar.gz (11.2 kB view details)

Uploaded Source

Built Distribution

techsig-0.0.4-py3-none-any.whl (10.6 kB view details)

Uploaded Python 3

File details

Details for the file techsig-0.0.4.tar.gz.

File metadata

  • Download URL: techsig-0.0.4.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for techsig-0.0.4.tar.gz
Algorithm Hash digest
SHA256 e5083a9c93219b0bc2ecd6f6e638a415a5badb089a194a854b91e791f7c6c6c6
MD5 0da6b60e86b45c036358943306b747f4
BLAKE2b-256 31f6957512f560d13500574bbb405080fcd4690fef61bb6271b2647458b24c63

See more details on using hashes here.

File details

Details for the file techsig-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: techsig-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 10.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for techsig-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 174a2d41d736fa427d57836076d4eeb7da3648cd1ba4cb62dc79f0a780fed3cd
MD5 3aeba8fdd47b83a2dd97e2e5d86980ee
BLAKE2b-256 edebbee3fc63d29d08818591afb08935abc25fd8f771cc814dd8092a9b51fd60

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page