Technical charts with signals
Project description
TechSig
- Package to get technical indicators for given market data based on which Bull and Bear signals are generated.
- This enables a non finance background person get the insights of the stock market technicalities in an understandable language.
- Function to get the market data is also provided.
- Plot are provided for all the techncial indicators which can help analyse the data better. ## Note- All investments, financial opinions expressed by techsig are from personal research and experience of the authors and are intended as educational material.
Author-
- Aayush Talekar
- Saloni Jaitly
Requirements:
- Pandas
- Numpy
- yfinance
- plotly
Function description
get_data(ticker, start_date, end_date):
Import daily market data :param ticker: ticker name according to National Stock Exchange :param start_date: format 'yyyy-mm-dd' :param end_date: format 'yyyy-mm-dd' :return: pandas.DataFrame() : OHCLV data on a daily frequency
moving_average(df, exponential=False, simple=False, plot=False, signal=False):
Calculate simple and exponential moving average (ma) for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :param exponential: Boolean: if True, exponential ma is displayed :param simple: Boolean: if True, simple ma is displayed :param plot: Boolean: if True, closing price with ma is plotted :param signal: Boolean: if True, bullish/bearish signals are returned :return: pandas.DataFrame() : moving average of 5 days, 10 days, 20 days, 50 days, 100 days and 200 days
MACD(df, a=12, b=26, c=9, signal=False, plot=False):
Calculate moving average convergence divergence (MACD) for given data
:param df: pandas.DataFrame() :market data downloaded from get_data()
:param a: number of periods for moving average fast line: default = 12
:param b: number of periods for moving average slow line: default = 26
:param c: number of periods for macd signal line: default = 9
:param plot: Boolean: if True, closing price with MACD is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame() : MA_Fast, MA_Slow, MACD, Signal and Positions are returned
RSI (df, time_window=14, signal=False, plot=False):
Calculate relative strength index (RSI) for given data
:param df: pandas.DataFrame() :market data downloaded from get_data()
:param time_window: number of periods for RSI : default = 14
:param plot: Boolean: if True, closing price with RSI is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame() : RSI and Position is returned
IchimokuCloud(df, plot=False):
Calculate Ichimoku Clouds for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :param plot: Boolean: if True, closing price with Ichimoku Clouds are plotted :return: pandas.DataFrame(): Conv_line, Base_line, Lead_span_A, Lead_span_B and Lagging span
ADX(df, trend=False, plot=False):
Calculate average directional index for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :param trend: Boolean: if True, strength of the trend is returned :param plot: Boolean: if True, closing price with ADX is plotted :return: pandas.DataFrame(): ADX, Positive Directional Index and Negative Directional Index
ATR(DF,n=14, plot=False):
Calculate average true range (ATR) for given data
:param DF: pandas.DataFrame() :market data downloaded from get_data()
:param n: number of periods for ATR: default = 14
:param plot: Boolean: if True, closing price with ATR is plotted
:return: pandas.DataFrame(): ATR
stochastic_oscillator(df, signal=False, plot=False):
Calculate stochastic oscillator %K and %D for given data.
:param df: pandas.DataFrame() :market data downloaded from get_data()
:param plot: Boolean: if True, closing price with stochastic oscillator is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame(): %K and %D values
OBV(DF, plot=False, signal=False):
Calculate on balance volume (OBV) for given data
:param DF: pandas.DataFrame() :market data downloaded from get_data()
:param plot: Boolean: if True, closing price with OBV is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame(): %K and %D values
ppsr(df):
Calculate Pivot Points, Supports and Resistances for given data
:param df: pandas.DataFrame() :market data downloaded from get_data()
:return: pandas.DataFrame() : Pivot Points, Resistances and Supports
semideviation(df):
Calculate semi deviation for given close price
:param df: pandas.DataFrame(): close price of data
:return: float: value of semi deviation
meandeviation(df):
Calculate mean deviation for given close price
:param df: pandas.DataFrame(): close price of data
:return: float: value of mean deviation
standard_deviation(df, n=21):
Calculate standard Deviation for given data.
:param df: pandas.DataFrame(): close price of data
:param n: number of periods: default = 21
:return: pandas.DataFrame(): moving standard deviations
TSI(df, r=25, s=13, c=9, signal=False, plot=False):
Calculate True Strength Index (TSI) for given data.
:param df: pandas.DataFrame(): market data downloaded from get_data()
:param r: time period for EMA_Fast: default = 25
:param s: time period for EMA_SLow: default = 13
:param c: time period for Signal Line: default = 9
:param plot: Boolean: if True, closing price with TSI is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame(): Price Change(pc), Price Change Smoothed(pcs), Price Change Double Smooth(pcds), Absolute Price Change(apc),
Absolute Price Change Smoothed(apcs), Absolute Price Change Double Smooth(apcds), TSI and Signal
MFI(df, n=14, signal = False, plot=False):
Calculate Money Flow Index(MFI) for given data.
:param df: pandas.DataFrame(): market data downloaded from get_data()
:param n: number of periods for MFI: default = 14
:param plot: Boolean: if True, closing price with MFI is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame(): Typical Price, Money Flow, MFI
summ(data):
Calculate the summary of the latest date :param df: pandas.DataFrame(): market data downloaded from get_data() :return: pandas.DataFrame(): Three dataframes are returned viz. Moving Average, Technical Indicators and Pivot Points
sentiment_signal(data):
Analysing the overall sentiment based on techncial indicators :param df: pandas.DataFrame(): market data downloaded from get_data() :return: pandas.DataFrame(): bull/bear/neutral signal of the technical indicator
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file techsig-0.1.0.tar.gz
.
File metadata
- Download URL: techsig-0.1.0.tar.gz
- Upload date:
- Size: 11.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b63476e68b8588aa4adb28830dbed0d7442f46be6efef16ebcbe13545a686aff |
|
MD5 | 3e43cfd7b582bf285e46a66fc46792cf |
|
BLAKE2b-256 | a87907ded10b1ec741a90bba8ce3b05bebfe6559a6be104a314749e847701611 |
File details
Details for the file techsig-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: techsig-0.1.0-py3-none-any.whl
- Upload date:
- Size: 10.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 54eccb1525554919f47afb4f21bb1be6b28fe37b6e2352af460e2f236db91ae8 |
|
MD5 | 724601364185f848005fb84288757287 |
|
BLAKE2b-256 | 5536235acceaa2f0c1f310c040be313ab40f5350ab4ea20e221caa35f2c95168 |