Skip to main content

Linear regression, with F-tests, AIC, and linear constraints.

Project description

Linear regression, with p-values and AIC for the full model, p-values per coefficient, and tests of linear constraints on regression coefficients. The formulas are based on Bingham & Fry.

The module uses only the modules numpy and math (built-in).

Basic usage

By default, do not add an explicit intercept to the predictors. The intercept will be appended as an additional predictor, unless the argument explicit_intercept is given and set to True (for if you want to define constraints involving the intercept).

Example, using simulated data:

import numpy as np

import teg_regression

nObs = 300

nPred = 5

fix_coeffs = {0: 1, 3: 2} # Set to empty dict to simulate the null model.

X, y = teg_regression.sim_data(nObs, nPred, fix_coeffs=fix_coeffs, fix_intercept=20)

O = teg_regression.run_regression(X, y)

The function returns a dictionary O with statistical values and prints out (unless report=False is set as an argument):

Test of the model:

F(5,294) = 0.849, p = 0.516

AIC constrained - free = -1.28e+03 (negative supports constraints).

Tests per coefficient.

Predictor 0: b = 0.00522, F(1,294) = 0.00842, p = 0.927

Predictor 1: b = 0.00324, F(1,294) = 0.00373, p = 0.951

Predictor 2: b = -0.0759, F(1,294) = 1.88, p = 0.172

Predictor 3: b = -0.093, F(1,294) = 2.69, p = 0.102

Predictor 4: b = 0.0182, F(1,294) = 0.115, p = 0.735

Intercept: b = 20.6, F(1,294) = 1.04e+05, p = 1.11e-16

Linear constraints

Linear constraints specify hypotheses in terms of weighted sums of the coefficients, to be tested against the free model. E.g., assuming we have four predictors, the matrix equation

[1 0 0 0] [0]

[0 1 0 0] * betas = [0]

[0 0 1 0] [0]

would constrain the first three predictors to be zero.

Similarly,

[1 -1 0 0] * betas = 0

Would constrain the first and second predictor to be equal.

The Constraints argument, specifying the desired hypothesis, is a dictionary with the "coefficients" matrix, as a 2D array, and the "constants" vector, also as an array. The example below shows the Constraints setup to set two specific predictor-coefficients to 0.

pred_to_test = [1, 2]

Constraints = {}

Constraints['coefficients'] = np.array([[0 for a in range(X.shape[1])] for newrow in range(2)]).reshape(2, X.shape[1])

Constraints['coefficients'][0][pred_to_test[0]] = 1

Constraints['coefficients'][1][pred_to_test[1]] = 1

Constraints['constants'] = np.array([0, 0])

O = teg_regression.run_regression(X, y, Constraints)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

teg_regression-0.1.0.tar.gz (4.7 kB view details)

Uploaded Source

Built Distribution

teg_regression-0.1.0-py3-none-any.whl (5.1 kB view details)

Uploaded Python 3

File details

Details for the file teg_regression-0.1.0.tar.gz.

File metadata

  • Download URL: teg_regression-0.1.0.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.5

File hashes

Hashes for teg_regression-0.1.0.tar.gz
Algorithm Hash digest
SHA256 74b169f8341f04aaaa57ab8713ababe92e859ebf6951a938d55d1395212a9985
MD5 a495782c2647fe1bc8077325f6665026
BLAKE2b-256 0f64bb4190c6903b4030ecba255b4849edaf0c0a9c370b42d3c99cd0f9fbcc1c

See more details on using hashes here.

File details

Details for the file teg_regression-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for teg_regression-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 85f22a967a1168afbef865e4ae5f0be9d10691825a8bacd400c0329299291eac
MD5 ea0a2a14a44434b5afcc0fd148019247
BLAKE2b-256 fdeef18f0de17dad36a72af994804a4a8088a4d5a2726873f2d1a08bc5178a2b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page