Skip to main content

Data Downloader for Tehran stock market

Project description

Tehran Stock Market

made-with-python PyPI - Downloads PyPI version Code style: black

A python package that helps to access TCCIM stock price history, Using OOP Interface


  • Download All stocks prices
  • Download prices from a group (i.e ETFs or cars, etc.)
  • Download Price history of one specific Stock
  • After first setup available offline.
  • CommandLine Interface
  • Export data to csv, excel or Stata(dta)
  • Compatible with sqlalchemy
  • Compatible with PANDAS
  • Based on light sqlite

0 - Install

pip install tehran_stocks_ng

1- Initialization

For first use you need initialize the database

1-1 Command line

ts-get init  # Set up to sqlite database

1-2 Python

import tehran_stocks
# On first import package initialize itself

During initialization you will prompt for downloading all prices. if you answer yes it will download all prices, otherwise you can download data

2- Download and Update prices

2-1 Command line

ts-get update # update  all price , or download all if no price exist
ts-get  group 34 ## 34 is the code for car's group.
ts-get get_groups ## get group name and group codes

2-2 Python

from tehran_stocks import get_all_price, Stocks, update_group

get_all_price() # download and(or) update all prices

update_group(34) #download and(or) update Stocks in groupCode = 34 (Cars)

Stocks.get_group() # to see list of group codes

3- Access Data

To access data you can use Stocks which is an customized sqlalchemy object, which helps you to find prices on an easy way.

3-1 Search Stocks

from tehran_stocks import Stocks, db

# You can use query to find stocks
stock = Stocks.query.filter_by(name='كگل').first() #find by symbol(نماد)

stock = Stocks.query.filter_by(code='35700344742885862').first() # find by code on tsetmc url

stock = Stocks.query.filter('%گل گهر%')).first() # Search by title

stock_list = Stocks.query.filter_by(group_code =34).all() # find all Stocks in Khodro

stock_list = Stocks.query.filter(Stocks.group_code.in_([13,34])).all() # all stocks in khodro and felezat

## (Advanced)or run sql query using orm or raw sql
db.session.query(Stocks.group_code, Stocks.group_name).group_by(Stocks.group_code).all()

db.session.execute('select group_code , group_name from stocks group by group_name').fetchall()

Now easily access stock price and do whatever you want with pandas dataframes:

# use data as a pandas dataframe
>>> stock.df #
      id               code        ticker  dtyyyymmdd    first     high      low    close        value      vol  openint per     open     last       date
0  22491  35700344742885862  Gol-E-Gohar.    20040829  12000.0  12021.0  12000.0  12000.0  18841605000  1570000     2708   D  12000.0  12000.0 2004-08-29

>>> stock.summary()
Start date: 20040829
End date: 20190714
Total days: 2987

>>> stock.update()
# update stock price history

# Export to your preferred format
>>> stock.df.to_csv('price.csv')
>>> stock.df.to_excel('price.xlsx')
>>> stock.df.to_stata('price.dta')


  • [x] Create Database
  • [x] Download Data
  • [x] CommandLine Support
  • [ ] Jalali Support

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for tehran-stocks-ng, version 0.6.4
Filename, size File type Python version Upload date Hashes
Filename, size tehran_stocks_ng-0.6.4-py3-none-any.whl (11.0 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size tehran-stocks-ng-0.6.4.tar.gz (9.0 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page