Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

Machine Learning Performance Testing Framework

Project description

Build Status MIT license pypi badge

tempeh

tempeh is a framework to

TEst

Machine learning

PErformance

exHaustively

which includes tracking memory usage and run time. This is particularly useful as a pluggable tool for your repository's performance tests. Typically, people want to run them periodically over various datasets and/or with a number of models to catch regressions with respect to run time or memory consumption. This should be as easy as

import pytest
from time import time
from tempeh.configurations import datasets, models

@pytest.mark.parametrize('Dataset', datasets.values())
@pytest.mark.parametrize('Model', models.values())
def test_fit_predict_regression(Dataset, Model):
    dataset = Dataset()
    X_train, X_test = dataset.get_X()
    y_train, y_test = dataset.get_y()
    model = Model()
    max_execution_time = get_max_execution_time(dataset, model)
    if model.compatible_with_dataset(dataset):
        start_time = time()
        model.fit(X_train, y_train)
        model.predict(X_test)
        duration = time() - start_time

        assert duration < max_execution_time

Installation

tempeh depends on various packages to provide models, including tensorflow, torch, xgboost, lightgbm. To install a release version of tempeh just run

pip install tempeh
Common issues
  • If you're using a 32-bit Python version you might need to switch to a 64-bit Python version first to successfully install tensorflow.
  • If the installation of torch fails try using the recommendation from the pytorch website for stable versions without CUDA for your python version on your operating system.

Structure

Datasets

Datasets (located in the datasets/ directory) encapsulate different datasets used for testing.

To add a new one

  • Create a python file in the datasets/ directory with naming convention [name]_datasets.py
  • Subclass BasePerformanceDatasetWrapper. The naming convention is [dataset_name]PerformanceDatasetWrapper
  • In __init__ load the dataset and call super().__init__(data, targets, size)
  • Add the class to __init__.py
  • Make sure the class contains class variables task, data_type, size
  • Add an entry to the datasets dictionary in configurations.py.

Models

Models (models/ directory) wrap different machine learning models.

To add a new one

  • Create a python file in the models/ directory with naming convention [name]_model.py
  • Subclass BaseModelWrapper and name the class [name]ModelWrapper
  • In __init__ train the model; we expect format __init__(self, ...)
  • Models must contain tasks and algorithm
  • Add an entry to the models dictionary in configurations.py.

Maintainers

In alphabetical order:

Contributing

To contribute please check our Contributing Guide.

Issues

Regular (non-Security) Issues

Please submit a report through Github issues. A maintainer will respond within a reasonable period of time to handle the issue as follows:

  • bug: triage as bug and provide estimated timeline based on severity
  • feature request: triage as feature request and provide estimated timeline
  • question or discussion: triage as question and respond or notify/identify a suitable expert to respond

Maintainers are supposed to link duplicate issues when possible.

Reporting Security Issues

Please take a look at our guidelines for reporting security issues.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for tempeh, version 0.1.8
Filename, size File type Python version Upload date Hashes
Filename, size tempeh-0.1.8-py3-none-any.whl (36.3 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size tempeh-0.1.8.tar.gz (20.8 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page