Skip to main content

Standalone TensorBoard for visualizing in deep learning

Project description

TensorBoard striped from TensorFlow, for general deep learning visualization.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorboard-1.0.0a5-cp36-cp36m-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.6m

tensorboard-1.0.0a5-cp36-cp36m-macosx_10_12_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

tensorboard-1.0.0a5-cp36-cp36m-macosx_10_11_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

tensorboard-1.0.0a5-cp35-cp35m-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.5m

tensorboard-1.0.0a5-cp35-cp35m-macosx_10_12_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.5m macOS 10.12+ x86-64

tensorboard-1.0.0a5-cp35-cp35m-macosx_10_11_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.5m macOS 10.11+ x86-64

tensorboard-1.0.0a5-cp34-cp34m-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.4m

tensorboard-1.0.0a5-cp34-cp34m-macosx_10_12_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.4m macOS 10.12+ x86-64

tensorboard-1.0.0a5-cp34-cp34m-macosx_10_11_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.4m macOS 10.11+ x86-64

tensorboard-1.0.0a5-cp27-cp27mu-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 2.7mu

tensorboard-1.0.0a5-cp27-cp27m-macosx_10_12_x86_64.whl (10.8 MB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

tensorboard-1.0.0a5-cp27-cp27m-macosx_10_11_x86_64.whl (10.8 MB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

File details

Details for the file tensorboard-1.0.0a5-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a5-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5848dbad7aba08863c5223f3dd84876f51f0aee3cd67b13eb08cec4c33f4521f
MD5 907895dd3fe3e3b702790d2e6fb28a60
BLAKE2b-256 c88e748b93f100f32541d2a34b4118ec82f4b167828d5b7e903a6498b1a1eca4

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a5-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a5-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 83b810704ad104ab37bbe842b148c2bf8f634e123836b2d7c27c240e35c31223
MD5 c57833afea694d3b01e58233d649c3b0
BLAKE2b-256 93e22a5095bbdf57e5a8f2d537a3837dc13040a1ef9ca2cdf58187242497d10a

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a5-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a5-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 7ca8cf41595a45ecc7a195a686b7c6cdb06f10c1160fc4f27491a1a24da8ca3a
MD5 4baf9e8d74d51a69e0d987477cd4f4b9
BLAKE2b-256 bddd175432b1a9ad614f898197dbf70ecec3af6930b0d11746fe7984151cf9bd

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a5-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a5-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ccc20bbc4ff39404b95391e1c65e08a644192c8f28492b7c7838cdea14e62279
MD5 99c9ad428bc7e90dd40a518436c1f8cd
BLAKE2b-256 a0689f0c75a78bd27aa3aad22eb7a2e3929462f72c7f94aefd2e680d76e2f4b1

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a5-cp35-cp35m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a5-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 aed5ae96fb1e635ef78393ada0a2bd50b712dc0ab5d046114458654d64a1db10
MD5 4d3aadf403ab3435cbe67a343c237259
BLAKE2b-256 70962ff901b8f6f4676b414f794fe353c7ea404a041716ff655e8f15812ceaea

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a5-cp35-cp35m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a5-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 a2347d5f243b9f55fe582b25ebebbf530c40b795f250278d845c53c4fce6cb87
MD5 7d50f6fbfbd9ce9533b4e4c13426bed6
BLAKE2b-256 4449003c458e232d46df08cbe48be728208008ae108e2c0cdf1667868fb42b38

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a5-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a5-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bb066e6ddca584f75af9925f0052733a61a20653cf1f1f62e272962257628a3d
MD5 be090485fefea504c94a21e0af6db6d3
BLAKE2b-256 8448aed6e1b351604d82ac5b087e72e808917f98e6a91e016392bbf33fb91224

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a5-cp34-cp34m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a5-cp34-cp34m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 17eab09552e7f24001eed38fae6e253b1091f5579b8c5da4bbfd3110669c1121
MD5 e8c96233b1690ca471323ff02c1845bb
BLAKE2b-256 57968cf01b684bd4522f25948ca4b27e764cc6ec79a82e40b998712d6526612e

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a5-cp34-cp34m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a5-cp34-cp34m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 dabad770f562b0708a4b6033071d63fb866b7a053e974bce0d397cf3a1b04e80
MD5 ab58b5c2cb06b0d442a2cd6edfddcddd
BLAKE2b-256 c9f6f95f7e073c7a0f204640d56f638434a4da8bc2a82047f56eeeacba05c5b1

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a5-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a5-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cb316ee426ed7d9643ac286657129519a5f69e28088d46d677f13c6621c5f38b
MD5 7b3d5eca853781859bf8a6192338e7f7
BLAKE2b-256 40382b5c1cb2bcfe2a07e6e8e8c1ae26ecd62b7d5a0604828cd209c12660aacd

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a5-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a5-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 fffd881a186936455da43ba654f6035d52a175781335a3d3df2fe8603cfdd51d
MD5 45aef9d263b5254ec368936b190f7134
BLAKE2b-256 d0b25d3c9c02b249a624e013b474c3a5733a8633f28f1937e7fddb3877462bca

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a5-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a5-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 d549701f9adac631b027b4fc14b4c8289657cc32569e6839306f0b65310dbaaf
MD5 cd5f1b24713d2749715a3baad279964c
BLAKE2b-256 e0ec95fe8f058b41515c7d5946beccaf75c4265c14f6c589d636256aaa19048e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page