Standalone TensorBoard for visualizing in deep learning
Project description
TensorBoard striped from TensorFlow, for general deep learning visualization.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size tensorboard-1.0.0a5-cp27-cp27m-macosx_10_11_x86_64.whl (10.8 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size tensorboard-1.0.0a5-cp27-cp27m-macosx_10_12_x86_64.whl (10.8 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size tensorboard-1.0.0a5-cp27-cp27mu-manylinux1_x86_64.whl (11.2 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size tensorboard-1.0.0a5-cp34-cp34m-macosx_10_11_x86_64.whl (10.8 MB) | File type Wheel | Python version cp34 | Upload date | Hashes View |
Filename, size tensorboard-1.0.0a5-cp34-cp34m-macosx_10_12_x86_64.whl (10.8 MB) | File type Wheel | Python version cp34 | Upload date | Hashes View |
Filename, size tensorboard-1.0.0a5-cp34-cp34m-manylinux1_x86_64.whl (11.2 MB) | File type Wheel | Python version cp34 | Upload date | Hashes View |
Filename, size tensorboard-1.0.0a5-cp35-cp35m-macosx_10_11_x86_64.whl (10.8 MB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size tensorboard-1.0.0a5-cp35-cp35m-macosx_10_12_x86_64.whl (10.8 MB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size tensorboard-1.0.0a5-cp35-cp35m-manylinux1_x86_64.whl (11.2 MB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size tensorboard-1.0.0a5-cp36-cp36m-macosx_10_11_x86_64.whl (10.8 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size tensorboard-1.0.0a5-cp36-cp36m-macosx_10_12_x86_64.whl (10.8 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size tensorboard-1.0.0a5-cp36-cp36m-manylinux1_x86_64.whl (11.2 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Close
Hashes for tensorboard-1.0.0a5-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d549701f9adac631b027b4fc14b4c8289657cc32569e6839306f0b65310dbaaf |
|
MD5 | cd5f1b24713d2749715a3baad279964c |
|
BLAKE2-256 | e0ec95fe8f058b41515c7d5946beccaf75c4265c14f6c589d636256aaa19048e |
Close
Hashes for tensorboard-1.0.0a5-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fffd881a186936455da43ba654f6035d52a175781335a3d3df2fe8603cfdd51d |
|
MD5 | 45aef9d263b5254ec368936b190f7134 |
|
BLAKE2-256 | d0b25d3c9c02b249a624e013b474c3a5733a8633f28f1937e7fddb3877462bca |
Close
Hashes for tensorboard-1.0.0a5-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cb316ee426ed7d9643ac286657129519a5f69e28088d46d677f13c6621c5f38b |
|
MD5 | 7b3d5eca853781859bf8a6192338e7f7 |
|
BLAKE2-256 | 40382b5c1cb2bcfe2a07e6e8e8c1ae26ecd62b7d5a0604828cd209c12660aacd |
Close
Hashes for tensorboard-1.0.0a5-cp34-cp34m-macosx_10_11_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dabad770f562b0708a4b6033071d63fb866b7a053e974bce0d397cf3a1b04e80 |
|
MD5 | ab58b5c2cb06b0d442a2cd6edfddcddd |
|
BLAKE2-256 | c9f6f95f7e073c7a0f204640d56f638434a4da8bc2a82047f56eeeacba05c5b1 |
Close
Hashes for tensorboard-1.0.0a5-cp34-cp34m-macosx_10_12_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 17eab09552e7f24001eed38fae6e253b1091f5579b8c5da4bbfd3110669c1121 |
|
MD5 | e8c96233b1690ca471323ff02c1845bb |
|
BLAKE2-256 | 57968cf01b684bd4522f25948ca4b27e764cc6ec79a82e40b998712d6526612e |
Close
Hashes for tensorboard-1.0.0a5-cp34-cp34m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bb066e6ddca584f75af9925f0052733a61a20653cf1f1f62e272962257628a3d |
|
MD5 | be090485fefea504c94a21e0af6db6d3 |
|
BLAKE2-256 | 8448aed6e1b351604d82ac5b087e72e808917f98e6a91e016392bbf33fb91224 |
Close
Hashes for tensorboard-1.0.0a5-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a2347d5f243b9f55fe582b25ebebbf530c40b795f250278d845c53c4fce6cb87 |
|
MD5 | 7d50f6fbfbd9ce9533b4e4c13426bed6 |
|
BLAKE2-256 | 4449003c458e232d46df08cbe48be728208008ae108e2c0cdf1667868fb42b38 |
Close
Hashes for tensorboard-1.0.0a5-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | aed5ae96fb1e635ef78393ada0a2bd50b712dc0ab5d046114458654d64a1db10 |
|
MD5 | 4d3aadf403ab3435cbe67a343c237259 |
|
BLAKE2-256 | 70962ff901b8f6f4676b414f794fe353c7ea404a041716ff655e8f15812ceaea |
Close
Hashes for tensorboard-1.0.0a5-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ccc20bbc4ff39404b95391e1c65e08a644192c8f28492b7c7838cdea14e62279 |
|
MD5 | 99c9ad428bc7e90dd40a518436c1f8cd |
|
BLAKE2-256 | a0689f0c75a78bd27aa3aad22eb7a2e3929462f72c7f94aefd2e680d76e2f4b1 |
Close
Hashes for tensorboard-1.0.0a5-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7ca8cf41595a45ecc7a195a686b7c6cdb06f10c1160fc4f27491a1a24da8ca3a |
|
MD5 | 4baf9e8d74d51a69e0d987477cd4f4b9 |
|
BLAKE2-256 | bddd175432b1a9ad614f898197dbf70ecec3af6930b0d11746fe7984151cf9bd |
Close
Hashes for tensorboard-1.0.0a5-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 83b810704ad104ab37bbe842b148c2bf8f634e123836b2d7c27c240e35c31223 |
|
MD5 | c57833afea694d3b01e58233d649c3b0 |
|
BLAKE2-256 | 93e22a5095bbdf57e5a8f2d537a3837dc13040a1ef9ca2cdf58187242497d10a |
Close
Hashes for tensorboard-1.0.0a5-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5848dbad7aba08863c5223f3dd84876f51f0aee3cd67b13eb08cec4c33f4521f |
|
MD5 | 907895dd3fe3e3b702790d2e6fb28a60 |
|
BLAKE2-256 | c88e748b93f100f32541d2a34b4118ec82f4b167828d5b7e903a6498b1a1eca4 |