Skip to main content

Standalone TensorBoard for visualizing in deep learning

Project description

TensorBoard striped from TensorFlow, for general deep learning visualization.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorboard-1.0.0a6-cp36-cp36m-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.6m

tensorboard-1.0.0a6-cp36-cp36m-macosx_10_12_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.6mmacOS 10.12+ x86-64

tensorboard-1.0.0a6-cp36-cp36m-macosx_10_11_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.6mmacOS 10.11+ x86-64

tensorboard-1.0.0a6-cp35-cp35m-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.5m

tensorboard-1.0.0a6-cp35-cp35m-macosx_10_12_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.5mmacOS 10.12+ x86-64

tensorboard-1.0.0a6-cp35-cp35m-macosx_10_11_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.5mmacOS 10.11+ x86-64

tensorboard-1.0.0a6-cp34-cp34m-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.4m

tensorboard-1.0.0a6-cp34-cp34m-macosx_10_12_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.4mmacOS 10.12+ x86-64

tensorboard-1.0.0a6-cp34-cp34m-macosx_10_11_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.4mmacOS 10.11+ x86-64

tensorboard-1.0.0a6-cp27-cp27mu-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 2.7mu

tensorboard-1.0.0a6-cp27-cp27m-macosx_10_12_x86_64.whl (10.8 MB view details)

Uploaded CPython 2.7mmacOS 10.12+ x86-64

tensorboard-1.0.0a6-cp27-cp27m-macosx_10_11_x86_64.whl (10.8 MB view details)

Uploaded CPython 2.7mmacOS 10.11+ x86-64

File details

Details for the file tensorboard-1.0.0a6-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a6-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9d7a95ae884c587accb2db674f7b73cbe37860a871292d9e2e8d0a96af00dea4
MD5 8fc36374e4b7156b1ccf9befd32d5091
BLAKE2b-256 63dcdc40575b23389c40a728d00e012af7071a81a89249dfa03a0957da1204d9

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a6-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a6-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 7395ce1c558be04e6a3436d53a223254587dc81961435f64e475edfc523d9fd0
MD5 401f7bf998804fbf43b3135ec1d6c6a4
BLAKE2b-256 2756aa0acd32695d9b5eeae156274b8ac0a102a480577cc57ea2da843a9cd509

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a6-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a6-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 6b85bd61ab3d00cd390040a0e98e07f6fd8b0978b046a5abc832015a4d22e527
MD5 41289c5b98bb6ecaafcdb24aead55c5d
BLAKE2b-256 3fcf7e57955ab1abd8d28d1f1a9c0d9f5988603d5ef497e46b87c891eb5f73f8

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a6-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a6-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 679af9ca86e1b315f2c66c989ebaa617ab5ef9e5ba7cdf76ebacc2e9427faf49
MD5 24c29d25eb8ca68acc99a39d11296bfa
BLAKE2b-256 8ba780f9491702937cc1563b1f5c31c7292a0dbdba1ee8f68fa36b1d04ed34da

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a6-cp35-cp35m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a6-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ec22aadbcc3257d5dd39702d25aebdb67b185ca2ad4866203e1c9a5eecb2352d
MD5 d939873f74b6997fd46935277c67c599
BLAKE2b-256 071e7a44bebd3bd471c19daba543581694a9f4dd69e6fab8e3d8ad9121992a38

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a6-cp35-cp35m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a6-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 56485ab7a8dda60e11d72e9299ba808c688031d0e4d49c283e38f97609f3a68f
MD5 bf3adffd7b6bdc5d67268a7c1b78dc84
BLAKE2b-256 af5af9fb4ae894d63e0fa13b6b91b69a82c961bd4a9bfce91e38774db1b5134f

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a6-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a6-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 37118e41d56b2f31890fe0653923db68a8a28179542f0e6799b783d4d7d45efe
MD5 b8aa89cad6bd150e5058a2c87a591069
BLAKE2b-256 0ab56cf871c236fe3a05f3d917574a4985e76280583df6ba0d56aabdf85934b0

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a6-cp34-cp34m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a6-cp34-cp34m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0e35a1035e8757ea27e64b35c478ece3b98fd89a2ead4187021ec51f1e5d8315
MD5 6ff2d2f1d655273d52a36739a167e578
BLAKE2b-256 5c8761f906c2141f7e98890c69601d3defcbb01faee68fd73cd60f2260fc0777

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a6-cp34-cp34m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a6-cp34-cp34m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 68074cfcaeee4e539e49f6da94f4a8eb9847bf2b0af60f7427420ed92d1a47a4
MD5 4bc1188d08bda3bda874c91d9d71537c
BLAKE2b-256 fc29f5a53b9450c0c1659be92c49789afeab3d0e93a7c70647b6205b7f518bb2

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a6-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a6-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9aa3672800ec1bb3b778b7c280c784b1ae0f561bc38d553861aee3776bd34a00
MD5 ef752f4bc8a943550a3a5ed23fed383b
BLAKE2b-256 d68c2f9899c075f649e9a9c8e166ad8cfa0d7d525f0cd54bd9053889f5d39a2d

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a6-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a6-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0228c820d5ec1c29b9f4000e7efd572c454a1337d94796473e3c9a0a4568290a
MD5 d465d752c879207a18cf13bf7a839cfe
BLAKE2b-256 7db69c7cd98b7642681a4514ad54d9bf96d6f65857cf5d66a6adbed0787a30e2

See more details on using hashes here.

File details

Details for the file tensorboard-1.0.0a6-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for tensorboard-1.0.0a6-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 49c59f46cc3dcd526dfe3b3bf3a9e6b1261e5d1521b9f7fab497413cb981db00
MD5 d80754385770f6922d711a9313ec848a
BLAKE2b-256 5ec249389f30169942ac5befb4560ea9ec5c6b056172524ce47c5d25203ff26d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page