Interact with ML models in the browser so that we can better understand their strengths and weaknesses on real world data
Project description
tensorboardY
The easier it is to interact with ML models, the faster we can determine their current limitations. This library seeks to automate the creation of cool ML demo websites like
Documentation is here (generated using pdoc3). The github repo is here.
Install
pip install tensorboardY
Examples
python examples/simple_example.py
import tensorboardY as ty
import matplotlib.pyplot as plt
def forward(x, title):
plt.imshow(x)
plt.title(title)
return plt.gcf()
inputs = [ty.Image(var='x', exs=['imgs/curve.jpg']),
ty.Text(var='title', exs=["EXAMPLE"])]
ty.show(forward, inputs)
python examples/full_example.py
import tensorboardY as ty
import os
def forward(z):
return z
inputs = [ty.Widget("z", name="Choose your input",
camera=True,
image_upload=True,
image_list=['imgs/curve.jpg'], image_names=['Curve example'],
text_input=True,
text_list=['This is an example text!'], text_names=['Random'],
option_list=["This is an example option!"], option_names=['Resnet50'],
boolean=True,
slider=(5, 20, 0.5), slider_default=10.3)]
ty.show(forward, inputs)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
tensorboardY-0.1.9.tar.gz
(47.9 kB
view hashes)
Built Distribution
Close
Hashes for tensorboardY-0.1.9-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 52edc9a3e27dd7fbd82001898225dbd4ccc81637a88b085892b3e5280062887a |
|
MD5 | 93a967d981d51ce6002cc1c88ec2af69 |
|
BLAKE2b-256 | ad2df71f8d0f5aad44735020650388f63618252444f9c6b62e848748d07ec9b9 |