Skip to main content

nightly release for tensorcircuit

Project description

English | 简体中文

TensorCircuit is the next generation of quantum circuit simulators with support for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism.

TensorCircuit is built on top of modern machine learning frameworks and is machine learning backend agnostic. It is specifically suitable for highly efficient simulations of quantum-classical hybrid paradigm and variational quantum algorithms.

Getting Started

Please begin with Quick Start.

For more information and introductions, please refer to helpful example scripts and full documentation. API docstrings and test cases in tests are also informative.

The following are some minimal demos.

  • Circuit manipulation:
import tensorcircuit as tc
c = tc.Circuit(2)
c.H(0)
c.CNOT(0,1)
c.rx(1, theta=0.2)
print(c.wavefunction())
print(c.expectation_ps(z=[0, 1]))
print(c.sample())
  • Runtime behavior customization:
tc.set_backend("tensorflow")
tc.set_dtype("complex128")
tc.set_contractor("greedy")
  • Automatic differentiations with jit:
def forward(theta):
    c = tc.Circuit(2)
    c.R(0, theta=theta, alpha=0.5, phi=0.8)
    return tc.backend.real(c.expectation((tc.gates.z(), [0])))

g = tc.backend.grad(forward)
g = tc.backend.jit(g)
theta = tc.array_to_tensor(1.0)
print(g(theta))

Install

The package is purely written in Python and can be obtained via pip as:

pip install tensorcircuit

We also have Docker support.

Advantages

  • Tensor network simulation engine based

  • JIT, AD, vectorized parallelism compatible, GPU support

  • Efficiency

    • Time: 10 to 10^6 times acceleration compared to tfq or qiskit

    • Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)

  • Elegance

    • Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions

    • API design: quantum for humans, less code, more power

Citing TensorCircuit

This project is released by Tencent Quantum Lab and is currently maintained by Shi-Xin Zhang with contributions from the lab and open source community.

If this project helps in your research, please cite our software whitepaper:

TensorCircuit: a Quantum Software Framework for the NISQ Era

which is also a good introduction for the software.

Contributing

For contribution guidelines and notes, see CONTRIBUTING.

We welcome issues, PRs, and discussions from everyone, and these are all hosted on GitHub.

Researches and Applications

DQAS

For the application of Differentiable Quantum Architecture Search, see applications. Reference paper: https://arxiv.org/pdf/2010.08561.pdf.

VQNHE

For the application of Variational Quantum-Neural Hybrid Eigensolver, see applications. Reference paper: https://arxiv.org/pdf/2106.05105.pdf and https://arxiv.org/pdf/2112.10380.pdf.

VQEX - MBL

For the application of VQEX on MBL phase identification, see the tutorial. Reference paper: https://arxiv.org/pdf/2111.13719.pdf.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorcircuit-nightly-0.2.2.dev20220713.tar.gz (203.3 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file tensorcircuit-nightly-0.2.2.dev20220713.tar.gz.

File metadata

File hashes

Hashes for tensorcircuit-nightly-0.2.2.dev20220713.tar.gz
Algorithm Hash digest
SHA256 712c9159c065b2be6c284029c7bf59be8ab8bec78438f7814d30098398acc583
MD5 d02ecd763ff1b561999593d6400a625a
BLAKE2b-256 2a97e92968cade5eefbfcc1b7f12801feca96b63659d3bed40a1585aeddcba8b

See more details on using hashes here.

File details

Details for the file tensorcircuit_nightly-0.2.2.dev20220713-py3-none-any.whl.

File metadata

File hashes

Hashes for tensorcircuit_nightly-0.2.2.dev20220713-py3-none-any.whl
Algorithm Hash digest
SHA256 871765fa004e54c584d1d76c291856986bd7a63c038d8ec45cfab5631ef99fad
MD5 3d966a859a1f9a6fc0d85dde3647ebc3
BLAKE2b-256 9de3dfd0cf73d871f0f1bdab514e69de0269c5c53aff8a42f98feb2c6c36d34c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page