Skip to main content

nightly release for tensorcircuit

Project description

English | 简体中文

TensorCircuit is the next generation of quantum circuit simulators with support for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism.

TensorCircuit is built on top of modern machine learning frameworks and is machine learning backend agnostic. It is specifically suitable for highly efficient simulations of quantum-classical hybrid paradigm and variational quantum algorithms.

Getting Started

Please begin with Quick Start.

For more information and introductions, please refer to helpful example scripts and full documentation. API docstrings and test cases in tests are also informative.

The following are some minimal demos.

  • Circuit manipulation:
import tensorcircuit as tc
c = tc.Circuit(2)
c.H(0)
c.CNOT(0,1)
c.rx(1, theta=0.2)
print(c.wavefunction())
print(c.expectation_ps(z=[0, 1]))
print(c.sample())
  • Runtime behavior customization:
tc.set_backend("tensorflow")
tc.set_dtype("complex128")
tc.set_contractor("greedy")
  • Automatic differentiations with jit:
def forward(theta):
    c = tc.Circuit(2)
    c.R(0, theta=theta, alpha=0.5, phi=0.8)
    return tc.backend.real(c.expectation((tc.gates.z(), [0])))

g = tc.backend.grad(forward)
g = tc.backend.jit(g)
theta = tc.array_to_tensor(1.0)
print(g(theta))

Install

The package is purely written in Python and can be obtained via pip as:

pip install tensorcircuit

And we recommend you install this package with tensorflow also installed as:

pip install tensorcircuit[tensorflow]

Other optional dependencies include [torch], [jax] and [qiskit].

For nightly build of tensorcircuit with new features, try:

pip uninstall tensorcircuit
pip install tensorcircuit-nightly

We also have Docker support.

Advantages

  • Tensor network simulation engine based

  • JIT, AD, vectorized parallelism compatible, GPU support

  • Efficiency

    • Time: 10 to 10^6 times acceleration compared to tfq or qiskit

    • Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)

  • Elegance

    • Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions

    • API design: quantum for humans, less code, more power

Citing TensorCircuit

This project is released by Tencent Quantum Lab and is currently maintained by Shi-Xin Zhang with contributions from the lab and open source community.

If this project helps in your research, please cite our software whitepaper:

TensorCircuit: a Quantum Software Framework for the NISQ Era

which is also a good introduction for the software.

Contributing

For contribution guidelines and notes, see CONTRIBUTING.

We welcome issues, PRs, and discussions from everyone, and these are all hosted on GitHub.

Researches and Applications

DQAS

For the application of Differentiable Quantum Architecture Search, see applications. Reference paper: https://arxiv.org/pdf/2010.08561.pdf.

VQNHE

For the application of Variational Quantum-Neural Hybrid Eigensolver, see applications. Reference paper: https://arxiv.org/pdf/2106.05105.pdf and https://arxiv.org/pdf/2112.10380.pdf.

VQEX - MBL

For the application of VQEX on MBL phase identification, see the tutorial. Reference paper: https://arxiv.org/pdf/2111.13719.pdf.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorcircuit-nightly-0.4.1.dev20221015.tar.gz (231.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file tensorcircuit-nightly-0.4.1.dev20221015.tar.gz.

File metadata

File hashes

Hashes for tensorcircuit-nightly-0.4.1.dev20221015.tar.gz
Algorithm Hash digest
SHA256 b4eea485913c5beff5edecffaf64cc1458b93bd317397c7103b784f234d87a2f
MD5 e14f461864c8e42d626d00e410ff6b18
BLAKE2b-256 f038d8951145cc142db530bf00225ef7077a25919f3fb951941115e7481f2d96

See more details on using hashes here.

File details

Details for the file tensorcircuit_nightly-0.4.1.dev20221015-py3-none-any.whl.

File metadata

File hashes

Hashes for tensorcircuit_nightly-0.4.1.dev20221015-py3-none-any.whl
Algorithm Hash digest
SHA256 48d3b725ebd727e1ff7329a39ce55eb025ec629783a580758957c73fa61f71ba
MD5 e3e73ec341595c48d5a28a7e083e7980
BLAKE2b-256 fdd9c9655a12ad7cf79f3a2cbb862473ddf0afcf19a10d49d62af7d18aeaa860

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page