Skip to main content

nightly release for tensorcircuit

Project description

English | 简体中文

TensorCircuit is the next generation of quantum circuit simulators with support for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism.

TensorCircuit is built on top of modern machine learning frameworks and is machine learning backend agnostic. It is specifically suitable for highly efficient simulations of quantum-classical hybrid paradigm and variational quantum algorithms.

Getting Started

Please begin with Quick Start.

For more information and introductions, please refer to helpful example scripts and full documentation. API docstrings and test cases in tests are also informative.

The following are some minimal demos.

  • Circuit manipulation:
import tensorcircuit as tc
c = tc.Circuit(2)
c.H(0)
c.CNOT(0,1)
c.rx(1, theta=0.2)
print(c.wavefunction())
print(c.expectation_ps(z=[0, 1]))
print(c.sample())
  • Runtime behavior customization:
tc.set_backend("tensorflow")
tc.set_dtype("complex128")
tc.set_contractor("greedy")
  • Automatic differentiations with jit:
def forward(theta):
    c = tc.Circuit(2)
    c.R(0, theta=theta, alpha=0.5, phi=0.8)
    return tc.backend.real(c.expectation((tc.gates.z(), [0])))

g = tc.backend.grad(forward)
g = tc.backend.jit(g)
theta = tc.array_to_tensor(1.0)
print(g(theta))

Install

The package is purely written in Python and can be obtained via pip as:

pip install tensorcircuit

And we recommend you install this package with tensorflow also installed as:

pip install tensorcircuit[tensorflow]

Other optional dependencies include [torch], [jax] and [qiskit].

For nightly build of tensorcircuit with new features, try:

pip uninstall tensorcircuit
pip install tensorcircuit-nightly

We also have Docker support.

Advantages

  • Tensor network simulation engine based

  • JIT, AD, vectorized parallelism compatible, GPU support

  • Efficiency

    • Time: 10 to 10^6 times acceleration compared to tfq or qiskit

    • Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)

  • Elegance

    • Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions

    • API design: quantum for humans, less code, more power

Citing TensorCircuit

This project is released by Tencent Quantum Lab and is currently maintained by Shi-Xin Zhang with contributions from the lab and open source community.

If this project helps in your research, please cite our software whitepaper:

TensorCircuit: a Quantum Software Framework for the NISQ Era

which is also a good introduction for the software.

Contributing

For contribution guidelines and notes, see CONTRIBUTING.

We welcome issues, PRs, and discussions from everyone, and these are all hosted on GitHub.

Researches and Applications

DQAS

For the application of Differentiable Quantum Architecture Search, see applications. Reference paper: https://arxiv.org/pdf/2010.08561.pdf.

VQNHE

For the application of Variational Quantum-Neural Hybrid Eigensolver, see applications. Reference paper: https://arxiv.org/pdf/2106.05105.pdf and https://arxiv.org/pdf/2112.10380.pdf.

VQEX - MBL

For the application of VQEX on MBL phase identification, see the tutorial. Reference paper: https://arxiv.org/pdf/2111.13719.pdf.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorcircuit-nightly-0.4.1.dev20221022.tar.gz (233.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file tensorcircuit-nightly-0.4.1.dev20221022.tar.gz.

File metadata

File hashes

Hashes for tensorcircuit-nightly-0.4.1.dev20221022.tar.gz
Algorithm Hash digest
SHA256 12aa323e8e1564fb20dc800e8af628f36102950dd1c193fb5db0ade55fc3406c
MD5 e72d712c3c268d6fa85d57e9228aa997
BLAKE2b-256 8541be84ecb765499e90ab525ae548e056ad11c46cf5289a80b92142c3c14549

See more details on using hashes here.

File details

Details for the file tensorcircuit_nightly-0.4.1.dev20221022-py3-none-any.whl.

File metadata

File hashes

Hashes for tensorcircuit_nightly-0.4.1.dev20221022-py3-none-any.whl
Algorithm Hash digest
SHA256 58f419fd3dff926f345e2468f72ed9d8d07362a87617c622f68a1d09c7b33781
MD5 304527f82618cc18856ffb76497aadf6
BLAKE2b-256 9a11161c61b31a6b96c37b3cb49f5e72e86f7e95921652249e7d8bc2c7c16b45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page