Skip to main content

nightly release for tensorcircuit

Project description

English | 简体中文

TensorCircuit is the next generation of quantum circuit simulators with support for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism.

TensorCircuit is built on top of modern machine learning frameworks and is machine learning backend agnostic. It is specifically suitable for highly efficient simulations of quantum-classical hybrid paradigm and variational quantum algorithms.

Getting Started

Please begin with Quick Start.

For more information and introductions, please refer to helpful example scripts and full documentation. API docstrings and test cases in tests are also informative.

The following are some minimal demos.

  • Circuit manipulation:
import tensorcircuit as tc
c = tc.Circuit(2)
c.H(0)
c.CNOT(0,1)
c.rx(1, theta=0.2)
print(c.wavefunction())
print(c.expectation_ps(z=[0, 1]))
print(c.sample(allow_state=True, batch=1024, format="count_dict_bin"))
  • Runtime behavior customization:
tc.set_backend("tensorflow")
tc.set_dtype("complex128")
tc.set_contractor("greedy")
  • Automatic differentiations with jit:
def forward(theta):
    c = tc.Circuit(2)
    c.R(0, theta=theta, alpha=0.5, phi=0.8)
    return tc.backend.real(c.expectation((tc.gates.z(), [0])))

g = tc.backend.grad(forward)
g = tc.backend.jit(g)
theta = tc.array_to_tensor(1.0)
print(g(theta))

Install

The package is written in pure Python and can be obtained via pip as:

pip install tensorcircuit

We recommend you install this package with tensorflow also installed as:

pip install tensorcircuit[tensorflow]

Other optional dependencies include [torch], [jax] and [qiskit].

For the nightly build of tensorcircuit with new features, try:

pip uninstall tensorcircuit
pip install tensorcircuit-nightly

We also have Docker support.

Advantages

  • Tensor network simulation engine based

  • JIT, AD, vectorized parallelism compatible, GPU support

  • Efficiency

    • Time: 10 to 10^6+ times acceleration compared to TensorFlow Quantum, Pennylane or Qiskit

    • Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)

  • Elegance

    • Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions

    • API design: quantum for humans, less code, more power

Contributing

Status

This project is released by Tencent Quantum Lab and is created and maintained by Shi-Xin Zhang with current core authors Shi-Xin Zhang and Yu-Qin Chen. We also thank contributions from the lab and the open source community.

Citation

If this project helps in your research, please cite our software whitepaper published in Quantum:

TensorCircuit: a Quantum Software Framework for the NISQ Era

which is also a good introduction to the software.

Guidelines

For contribution guidelines and notes, see CONTRIBUTING.

We welcome issues, PRs, and discussions from everyone, and these are all hosted on GitHub.

Contributors

Shixin Zhang
Shixin Zhang

💻 📖 💡 🤔 🚇 🚧 🔬 👀 🌍 ⚠️ 📢 💬
Yuqin Chen
Yuqin Chen

💻 📖 💡 🤔 🔬 ⚠️ 📢
Jiezhong Qiu
Jiezhong Qiu

💻 💡 🤔 🔬
Weitang Li
Weitang Li

💻 📖 🤔 🔬 ⚠️ 📢
Jiace Sun
Jiace Sun

💻 📖 💡 🤔 🔬 ⚠️
Zhouquan Wan
Zhouquan Wan

💻 📖 💡 🤔 🔬 ⚠️
Shuo Liu
Shuo Liu

💡 🔬
Hao Yu
Hao Yu

💻 📖 🚇 ⚠️
Xinghan Yang
Xinghan Yang

📖 🌍
JachyMeow
JachyMeow

🌍
Zhaofeng Ye
Zhaofeng Ye

🎨
erertertet
erertertet

💻 📖 ⚠️
Yicong Zheng
Yicong Zheng

Zixuan Song
Zixuan Song

📖 🌍
Hao Xie
Hao Xie

📖
Pramit Singh
Pramit Singh

⚠️
Jonathan Allcock
Jonathan Allcock

📖 🤔 📢
nealchen2003
nealchen2003

📖
隐公观鱼
隐公观鱼

💻 ⚠️

Research and Applications

DQAS

For the application of Differentiable Quantum Architecture Search, see applications. Reference paper: https://arxiv.org/pdf/2010.08561.pdf.

VQNHE

For the application of Variational Quantum-Neural Hybrid Eigensolver, see applications. Reference paper: https://arxiv.org/pdf/2106.05105.pdf and https://arxiv.org/pdf/2112.10380.pdf.

VQEX - MBL

For the application of VQEX on MBL phase identification, see the tutorial. Reference paper: https://arxiv.org/pdf/2111.13719.pdf.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorcircuit-nightly-0.7.0.dev20230212.tar.gz (267.3 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file tensorcircuit-nightly-0.7.0.dev20230212.tar.gz.

File metadata

File hashes

Hashes for tensorcircuit-nightly-0.7.0.dev20230212.tar.gz
Algorithm Hash digest
SHA256 922d44e090edd2b4154d523172cf9e15e975df794a9b413a62dccb21b2204d3f
MD5 6aa3395357dd4ad2d0025610a0c7cd80
BLAKE2b-256 e3ff981ae1e1b370b4cdc65cc29b9c22314b5159b2e487a8b31526e479eb77fc

See more details on using hashes here.

File details

Details for the file tensorcircuit_nightly-0.7.0.dev20230212-py3-none-any.whl.

File metadata

File hashes

Hashes for tensorcircuit_nightly-0.7.0.dev20230212-py3-none-any.whl
Algorithm Hash digest
SHA256 0bb49e983af945137406e34e1836a5a6c86f16909d1b848db85f1f630c7441db
MD5 94a496feadcd24178c70fe2cc5048ead
BLAKE2b-256 68320643ad2d0c0039620270fd5c75bdeb1bbc9f0b377ab5c23d31ceca01bc23

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page