Skip to main content

nightly release for tensorcircuit

Project description

English | 简体中文

TensorCircuit is the next generation of quantum circuit simulators with support for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism.

TensorCircuit is built on top of modern machine learning frameworks and is machine learning backend agnostic. It is specifically suitable for highly efficient simulations of quantum-classical hybrid paradigm and variational quantum algorithms.

Getting Started

Please begin with Quick Start.

For more information and introductions, please refer to helpful example scripts and full documentation. API docstrings and test cases in tests are also informative.

The following are some minimal demos.

  • Circuit manipulation:
import tensorcircuit as tc
c = tc.Circuit(2)
c.H(0)
c.CNOT(0,1)
c.rx(1, theta=0.2)
print(c.wavefunction())
print(c.expectation_ps(z=[0, 1]))
print(c.sample(allow_state=True, batch=1024, format="count_dict_bin"))
  • Runtime behavior customization:
tc.set_backend("tensorflow")
tc.set_dtype("complex128")
tc.set_contractor("greedy")
  • Automatic differentiations with jit:
def forward(theta):
    c = tc.Circuit(2)
    c.R(0, theta=theta, alpha=0.5, phi=0.8)
    return tc.backend.real(c.expectation((tc.gates.z(), [0])))

g = tc.backend.grad(forward)
g = tc.backend.jit(g)
theta = tc.array_to_tensor(1.0)
print(g(theta))

Install

The package is written in pure Python and can be obtained via pip as:

pip install tensorcircuit

We recommend you install this package with tensorflow also installed as:

pip install tensorcircuit[tensorflow]

Other optional dependencies include [torch], [jax] and [qiskit].

For the nightly build of tensorcircuit with new features, try:

pip uninstall tensorcircuit
pip install tensorcircuit-nightly

We also have Docker support.

Advantages

  • Tensor network simulation engine based

  • JIT, AD, vectorized parallelism compatible, GPU support

  • Efficiency

    • Time: 10 to 10^6+ times acceleration compared to TensorFlow Quantum, Pennylane or Qiskit

    • Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)

  • Elegance

    • Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions

    • API design: quantum for humans, less code, more power

Contributing

Status

This project is released by Tencent Quantum Lab and is created and maintained by Shi-Xin Zhang with current core authors Shi-Xin Zhang and Yu-Qin Chen. We also thank contributions from the lab and the open source community.

Citation

If this project helps in your research, please cite our software whitepaper published in Quantum:

TensorCircuit: a Quantum Software Framework for the NISQ Era

which is also a good introduction to the software.

Guidelines

For contribution guidelines and notes, see CONTRIBUTING.

We welcome issues, PRs, and discussions from everyone, and these are all hosted on GitHub.

Contributors

Shixin Zhang
Shixin Zhang

💻 📖 💡 🤔 🚇 🚧 🔬 👀 🌍 ⚠️ 📢 💬
Yuqin Chen
Yuqin Chen

💻 📖 💡 🤔 🔬 ⚠️ 📢
Jiezhong Qiu
Jiezhong Qiu

💻 💡 🤔 🔬
Weitang Li
Weitang Li

💻 📖 🤔 🔬 ⚠️ 📢
Jiace Sun
Jiace Sun

💻 📖 💡 🤔 🔬 ⚠️
Zhouquan Wan
Zhouquan Wan

💻 📖 💡 🤔 🔬 ⚠️
Shuo Liu
Shuo Liu

💡 🔬
Hao Yu
Hao Yu

💻 📖 🚇 ⚠️
Xinghan Yang
Xinghan Yang

📖 🌍
JachyMeow
JachyMeow

🌍
Zhaofeng Ye
Zhaofeng Ye

🎨
erertertet
erertertet

💻 📖 ⚠️
Yicong Zheng
Yicong Zheng

Zixuan Song
Zixuan Song

📖 🌍 💻 ⚠️
Hao Xie
Hao Xie

📖
Pramit Singh
Pramit Singh

⚠️
Jonathan Allcock
Jonathan Allcock

📖 🤔 📢
nealchen2003
nealchen2003

📖
隐公观鱼
隐公观鱼

💻 ⚠️
WiuYuan
WiuYuan

💡

Research and Applications

DQAS

For the application of Differentiable Quantum Architecture Search, see applications. Reference paper: https://arxiv.org/pdf/2010.08561.pdf (published in QST).

VQNHE

For the application of Variational Quantum-Neural Hybrid Eigensolver, see applications. Reference paper: https://arxiv.org/pdf/2106.05105.pdf (published in PRL) and https://arxiv.org/pdf/2112.10380.pdf.

VQEX - MBL

For the application of VQEX on MBL phase identification, see the tutorial. Reference paper: https://arxiv.org/pdf/2111.13719.pdf (published in PRB).

Stark - DTC

For the numerical demosntration of discrete time crystal enabled by Stark many-body localization, see the Floquet simulation demo. Reference paper: https://arxiv.org/pdf/2208.02866.pdf (published in PRL).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorcircuit-nightly-0.8.0.dev20230420.tar.gz (287.9 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file tensorcircuit-nightly-0.8.0.dev20230420.tar.gz.

File metadata

File hashes

Hashes for tensorcircuit-nightly-0.8.0.dev20230420.tar.gz
Algorithm Hash digest
SHA256 e9eb35aaff2b2677a4b5cf20807b15f8467d2d04ed7c01c89eeec898a1d3c27d
MD5 42e537f671ef4405c31aee2754a872b2
BLAKE2b-256 9c543fc80157dcffb50f8c13fe973dcc59db48ecde8ee3614cad8ef570caee46

See more details on using hashes here.

File details

Details for the file tensorcircuit_nightly-0.8.0.dev20230420-py3-none-any.whl.

File metadata

File hashes

Hashes for tensorcircuit_nightly-0.8.0.dev20230420-py3-none-any.whl
Algorithm Hash digest
SHA256 c0fff5f6d8bde29ab8eb71a7f475eedbb55b54f038448e28e15c75b71a188a0e
MD5 03649f5850e4f664eeef691339fd8d10
BLAKE2b-256 5518feadee71164268eed5b20fa42c9315c49e702ed8ee22db0b59926c7d7c2f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page