Skip to main content

Quantum circuits on top of tensor network

Project description

English | 简体中文

TensorCircuit is the next generation of quantum circuit simulators with support for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism.

TensorCircuit is built on top of modern machine learning frameworks and is machine learning backend agnostic. It is specifically suitable for highly efficient simulations of quantum-classical hybrid paradigm and variational quantum algorithms.

Getting Started

Please begin with Quick Start.

For more information and introductions, please refer to helpful example scripts and full documentation. API docstrings and test cases in tests are also informative.

The following are some minimal demos.

  • Circuit manipulation:
import tensorcircuit as tc
c = tc.Circuit(2)
c.H(0)
c.CNOT(0,1)
c.rx(1, theta=0.2)
print(c.wavefunction())
print(c.expectation_ps(z=[0, 1]))
print(c.sample())
  • Runtime behavior customization:
tc.set_backend("tensorflow")
tc.set_dtype("complex128")
tc.set_contractor("greedy")
  • Automatic differentiations with jit:
def forward(theta):
    c = tc.Circuit(2)
    c.R(0, theta=theta, alpha=0.5, phi=0.8)
    return tc.backend.real(c.expectation((tc.gates.z(), [0])))

g = tc.backend.grad(forward)
g = tc.backend.jit(g)
theta = tc.array_to_tensor(1.0)
print(g(theta))

Install

The package is purely written in Python and can be obtained via pip as:

pip install tensorcircuit

We also have Docker support.

Advantages

  • Tensor network simulation engine based

  • JIT, AD, vectorized parallelism compatible, GPU support

  • Efficiency

    • Time: 10 to 10^6 times acceleration compared to tfq or qiskit

    • Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)

  • Elegance

    • Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions

    • API design: quantum for humans, less code, more power

Contributing

For contribution guidelines and notes, see CONTRIBUTING.

We welcome issues, PRs, and discussions from everyone, and these are all hosted on GitHub.

Researches and Applications

DQAS

For the application of Differentiable Quantum Architecture Search, see applications. Reference paper: https://arxiv.org/pdf/2010.08561.pdf.

VQNHE

For the application of Variational Quantum-Neural Hybrid Eigensolver, see applications. Reference paper: https://arxiv.org/pdf/2106.05105.pdf and https://arxiv.org/pdf/2112.10380.pdf.

VQEX - MBL

For the application of VQEX on MBL phase identification, see the tutorial. Reference paper: https://arxiv.org/pdf/2111.13719.pdf.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorcircuit-0.1.0.tar.gz (219.0 kB view details)

Uploaded Source

Built Distribution

tensorcircuit-0.1.0-py3-none-any.whl (190.4 kB view details)

Uploaded Python 3

File details

Details for the file tensorcircuit-0.1.0.tar.gz.

File metadata

  • Download URL: tensorcircuit-0.1.0.tar.gz
  • Upload date:
  • Size: 219.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.8.0

File hashes

Hashes for tensorcircuit-0.1.0.tar.gz
Algorithm Hash digest
SHA256 697f4205cdfbb9008f58bcc68870464d85b35015dc07d47eb6a1aa1c2148972b
MD5 f5a4aa711da4c2104b329e0bd707b3cd
BLAKE2b-256 b65ca2608f18f7db6d176e2f55baed2db8c7b5fc5ceee9ca018b7666612074a5

See more details on using hashes here.

File details

Details for the file tensorcircuit-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: tensorcircuit-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 190.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.8.0

File hashes

Hashes for tensorcircuit-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fea7ce9f73c9dcd21bae2112c9c03dd598a617f9e411d2ea84bb3a8ab77a4ced
MD5 9ff3846d5d149503f729ea7bc59312bf
BLAKE2b-256 da6e02682af9d1490881f2aa2539a94ade21302aeb6f0b77906df5773e7fd9df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page