Skip to main content

Quantum circuits on top of tensor network

Project description

English | 简体中文

TensorCircuit is the next generation of quantum circuit simulators with support for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism.

TensorCircuit is built on top of modern machine learning frameworks and is machine learning backend agnostic. It is specifically suitable for highly efficient simulations of quantum-classical hybrid paradigm and variational quantum algorithms.

Getting Started

Please begin with Quick Start.

For more information and introductions, please refer to helpful example scripts and full documentation. API docstrings and test cases in tests are also informative.

The following are some minimal demos.

  • Circuit manipulation:
import tensorcircuit as tc
c = tc.Circuit(2)
c.H(0)
c.CNOT(0,1)
c.rx(1, theta=0.2)
print(c.wavefunction())
print(c.expectation_ps(z=[0, 1]))
print(c.sample())
  • Runtime behavior customization:
tc.set_backend("tensorflow")
tc.set_dtype("complex128")
tc.set_contractor("greedy")
  • Automatic differentiations with jit:
def forward(theta):
    c = tc.Circuit(2)
    c.R(0, theta=theta, alpha=0.5, phi=0.8)
    return tc.backend.real(c.expectation((tc.gates.z(), [0])))

g = tc.backend.grad(forward)
g = tc.backend.jit(g)
theta = tc.array_to_tensor(1.0)
print(g(theta))

Install

The package is purely written in Python and can be obtained via pip as:

pip install tensorcircuit

And we recommend you install this package with tensorflow also installed as:

pip install tensorcircuit[tensorflow]

Other optional dependencies include [torch], [jax] and [qiskit].

For nightly build of tensorcircuit with new features, try:

pip uninstall tensorcircuit
pip install tensorcircuit-nightly

We also have Docker support.

Advantages

  • Tensor network simulation engine based

  • JIT, AD, vectorized parallelism compatible, GPU support

  • Efficiency

    • Time: 10 to 10^6 times acceleration compared to tfq or qiskit

    • Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)

  • Elegance

    • Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions

    • API design: quantum for humans, less code, more power

Citing TensorCircuit

This project is released by Tencent Quantum Lab and is currently maintained by Shi-Xin Zhang with contributions from the lab and open source community.

If this project helps in your research, please cite our software whitepaper:

TensorCircuit: a Quantum Software Framework for the NISQ Era

which is also a good introduction for the software.

Contributing

For contribution guidelines and notes, see CONTRIBUTING.

We welcome issues, PRs, and discussions from everyone, and these are all hosted on GitHub.

Researches and Applications

DQAS

For the application of Differentiable Quantum Architecture Search, see applications. Reference paper: https://arxiv.org/pdf/2010.08561.pdf.

VQNHE

For the application of Variational Quantum-Neural Hybrid Eigensolver, see applications. Reference paper: https://arxiv.org/pdf/2106.05105.pdf and https://arxiv.org/pdf/2112.10380.pdf.

VQEX - MBL

For the application of VQEX on MBL phase identification, see the tutorial. Reference paper: https://arxiv.org/pdf/2111.13719.pdf.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorcircuit-0.3.1.tar.gz (244.5 kB view details)

Uploaded Source

Built Distribution

tensorcircuit-0.3.1-py3-none-any.whl (218.2 kB view details)

Uploaded Python 3

File details

Details for the file tensorcircuit-0.3.1.tar.gz.

File metadata

  • Download URL: tensorcircuit-0.3.1.tar.gz
  • Upload date:
  • Size: 244.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.8.0

File hashes

Hashes for tensorcircuit-0.3.1.tar.gz
Algorithm Hash digest
SHA256 5bbfe83932de016f9ddbbcdc95ab7d6590c02ec0748cbfbc0be6077e22f0b839
MD5 dc59dacf34226e92be97510c6f66475c
BLAKE2b-256 9c2044d64dc4ba3b9adadaa743b2fdd8ac906b88dd01fc82dce6638926229666

See more details on using hashes here.

File details

Details for the file tensorcircuit-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: tensorcircuit-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 218.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.8.0

File hashes

Hashes for tensorcircuit-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b48b377002c42adcdc53a20941fe021fe08f88a57c8aa808ac936f3e5099067a
MD5 75555389c7388a099e07ac8328050389
BLAKE2b-256 9fc93bc89b16cddb2b29c9b6d0be281831be430ce97d237b5ee83b56deb1fd36

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page